Galvanic Corrosion on Vacuum-Brazed UNS S31803 Duplex Stainless Steel Using Ni-Cr-Fe-P Alloy Filler Metals

CORROSION ◽  
2007 ◽  
Vol 63 (2) ◽  
pp. 127-134 ◽  
Author(s):  
L. H. Chiu ◽  
C. H. Wu ◽  
H. Chang
Author(s):  
Xiaoyan Wang ◽  
Lei Zhang ◽  
Xianren Kuang ◽  
Minxu Lu

Kela-2 Gas Field is the main supply for the West-East Gas Pipeline which runs across China with length of 4000 kilometers. Natural gas from Kela-2 contains CO2/H2S sour components and 10% condensation water, which makes the medium present very strong corrosivity. In avoidance of corrosion failure, DSS UNS S31803 line pipes were introduced to transmit the gas from the Gas Field to gathering center and processing factory. And it is the first time DSS pipes which is totally about 13km were widely used in oil and gas pipeline around the world. As it is known, DSS UNS S31803 pipes and traditional linepipes X80 were welded together between the gathering lines and mainline. Duplex stainless steel (DSS) UNS S31803 and X80 were welded by metal inertia gas welding (MIG) with consumable ER2209, and the joints take on good mechanical properties. The type II boundary close to the fusion boundary at the carbon steel side was observed by SEM. Obvious concentration gradient of Ni and Cr was observed in the region between the two boundaries, where the hardness was much higher. The weld metal with columnar and some polygonal ferrites take on good passivation against test solution. The heat affected zone beside the X80 base material is mostly granular bainite, some polygonal ferrites and few MA, X80 base material present obvious rolling state, the microstructure of which is the same to X80 heat affected zone, but the level of crystal size reach to 11.6. The corrosion behavior of them dosen’t have any difference, but the corrosion potential of X80 HAZ is much higher than X80 BM, about 50 mv, the corrosion rate of X80 HAZ is also much higher than X80 base material. Potential curves of different weldment regions were also studied in 3.5% NaCl solution and 3.5% NaCl solution with saturated CO2. Galvanic corrosion behavior of weld metal and X80 steel was also tested and the conclusion is: The cathode reaction is controlled by oxygen diffusion, and when area ratio S (S = Ac / Aa, Ac is the area of DSS WM, Aa is the area of X80 BM) increases, corrosion current of X80 is enhanced rapidly, which is called “gathering principle”. When the weld metal and X80 coupled, cathode has much higher polarization potential and is protected completely.


Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 891
Author(s):  
Heon-Young Ha ◽  
Tae-Ho Lee ◽  
Sung-Dae Kim ◽  
Jae Hoon Jang ◽  
Joonoh Moon

On newly developed Febalance-18Cr-7Mn-3Mo-3W-0.4N-(0.03, 0.57)Ni (in wt%) lean duplex stainless steels, the microstructure, element partitioning behavior, and resistance to pitting corrosion were investigated. After solution treatments, the two alloys were found to have similar microstructures in terms of phase fraction and grain size, and have a precipitation-free matrix. The polarization tests revealed that the addition of Ni was beneficial to improve the resistance to pitting corrosion, which was confirmed by the rise in pitting and repassivation potentials. The uniform corrosion behavior and galvanic corrosion rate of the matrix were investigated to explain the improved pitting corrosion resistance of the Ni-added lean duplex stainless steel. As a result, it was found that the addition of Ni enhanced the resistance to uniform corrosion by reducing the galvanic corrosion rate between the ferrite and austenite phases in the lean duplex stainless steel; thus, the pit growth rate was decreased, leading to improvement of the resistance to pitting corrosion.


2018 ◽  
Vol 32 (16) ◽  
pp. 1850198 ◽  
Author(s):  
Xingxing Wang ◽  
Shuai Li ◽  
Jin Peng

AgCuZnSn filler metals were prepared from the BAg34CuZnSn filler metal by a combinative process of brush plating and thermal diffusion, and the prepared filler metals were applied to the induction brazing of the 316LN stainless steel. The corrosion behaviors of the brazed joints was evaluated based on local corrosion analyses, where the morphology of the joints was analyzed by scanning electron microscopy (SEM) after immersion in a 3.5 wt.% NaCl aqueous solution and electrolytic etching in a 10 vol.% oxalic acid solution. The microstructure of the brazed joints with the Sn-plated filler mainly consisted of the Ag phase, Cu phase, CuZn phase, Cu5Zn8 phase, Cu[Formula: see text]Sn[Formula: see text] phase and Ag3Sn phase. The local corrosion analysis results indicated that galvanic corrosion occurred near the interface between the stainless steel base metal and the brazing seam. With increasing local corrosion time, the corrosion rates of both the brazing seam and the base metal first exhibited an increasing trend, followed by a decreasing trend, and the corrosion rate of the brazing seam was slightly greater than that of the base metal. The corrosion behaviors analysis indicated that the corrosion resistance of the brazing seam was reduced, and concave defects emerged after electrolytic etching for 90 s.


Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 564 ◽  
Author(s):  
Juliane Stützer ◽  
Tom Totzauer ◽  
Benjamin Wittig ◽  
Manuela Zinke ◽  
Sven Jüttner

The use of commercially available filler metals for wire and arc additive manufacturing (WAAM) of duplex stainless steel components results in a microstructure with a very low ferrite content. The ferrite–austenite ratio in the duplex stainless steel weld metal depends on both the cooling rate and particularly on the chemical composition. However, the research and testing of special filler metals for additive deposition welding using wire and arc processes is time-consuming and expensive. This paper describes a method that uses an additional cold wire feed in the gas metal arc welding (GMAW) process to selectively vary the alloy composition and thus the microstructure of duplex stainless steel weld metal. By mixing different filler metals, a reduction of the nickel equivalent and hence an increase in the ferrite content in additively manufactured duplex stainless steel specimens was achieved. The homogeneous mixing of electrode and cold wire was verified by energy dispersive spectroscopy (EDS). Furthermore, the addition of cold wire resulted in a significant increase in sample height while the sample width remained approximately the same.


2020 ◽  
Vol 7 (6) ◽  
pp. 345-355
Author(s):  
André de Albuquerque Vicente ◽  
Peter Aloysius D'silva ◽  
Roberto Luiz de Souza ◽  
Italo Leonardo dos Santos ◽  
Renato Rodrigues de Aguiar ◽  
...  

Author(s):  
A. Redjaïmia ◽  
J.P. Morniroli ◽  
G. Metauer ◽  
M. Gantois

2D and especially 3D symmetry information required to determine the crystal structure of four intermetallic phases present as small particles (average size in the range 100-500nm) in a Fe.22Cr.5Ni.3Mo.0.03C duplex stainless steel is not present in most Convergent Beam Electron Diffraction (CBED) patterns. Nevertheless it is possible to deduce many crystal features and to identify unambiguously these four phases by means of microdiffraction patterns obtained with a nearly parallel beam focused on a very small area (50-100nm).From examinations of the whole pattern reduced (RS) and full (FS) symmetries the 7 crystal systems and the 11 Laue classes are distinguished without ambiguity (1). By considering the shifts and the periodicity differences between the ZOLZ and FOLZ reflection nets on specific Zone Axis Patterns (ZAP) which depend on the crystal system, the centering type of the cell and the glide planes are simultaneously identified (2). This identification is easily done by comparisons with the corresponding simulated diffraction patterns.


Author(s):  
Edgard Silva ◽  
Francisco Eduardo Mendes da Silva ◽  
Amanda Medeiros ◽  
Ana Paula Alves Pacheco ◽  
IZAURA VIEGAS ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document