The atmospheric turbulence characteristics in a diurnal cycle

2020 ◽  
Vol 34 (14n16) ◽  
pp. 2040109
Author(s):  
Yi-Lei Song ◽  
Lin-Lin Tian ◽  
Ning Zhao

During a whole-day period, profiles of mean wind speed, wind shear and turbulence level shows great variability due to continuously varying atmospheric stability. Clearly understanding the spatial and temporal behaviors of the atmospheric wind flow is of great importance for science purposes. Large-eddy simulation (LES) technique is employed here to reproduce the evolution of atmospheric flow during a diurnal cycle. With the obtained LES results, wind characteristics in terms of wind speed, wind shear, turbulence intensity and turbulent kinetic energy can be examined referring to the stability classification. Besides, wind profiles obtained using currently available engineering models are also included for comparison. Disparities between the model predictions and the LES results illustrate that the standard engineering models cannot well capture the wind characteristics driven by the varying atmospheric stability solely, and a further improvement in models is highly needed.

Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1178
Author(s):  
Zhenru Shu ◽  
Qiusheng Li ◽  
Yuncheng He ◽  
Pak Wai Chan

A proper understanding of marine wind characteristics is of essential importance across a wide range of engineering applications. While the offshore wind speed and turbulence characteristics have been examined extensively, the knowledge of wind veer (i.e., turning of wind with height) is much less understood and discussed. This paper presents an investigation of marine wind field with particular emphasis on wind veer characteristics. Extensive observations from a light detection and ranging (Lidar) system at an offshore platform in Hong Kong were examined to characterize the wind veer profiles up to a height of 180 m. The results underscored the occurrence of marine wind veer, with a well-defined two-fold vertical structure. The observed maximum wind veer angle exhibits a reverse correlation with mean wind speed, which decreases from 2.47° to 0.59° for open-sea terrain, and from 7.45° to 1.92° for hilly terrain. In addition, seasonal variability of wind veer is apparent, which is most pronounced during spring and winter due to the frequent occurrence of the low-level jet. The dependence of wind veer on atmospheric stability is evident, particularly during winter and spring. In general, neutral stratification reveals larger values of wind veer angle as compared to those in stable and unstable stratification conditions.


2020 ◽  
Vol 12 (6) ◽  
pp. 2467 ◽  
Author(s):  
Fei Zhao ◽  
Yihan Gao ◽  
Tengyuan Wang ◽  
Jinsha Yuan ◽  
Xiaoxia Gao

To study the wake development characteristics of wind farms in complex terrains, two different types of Light Detection and Ranging (LiDAR) were used to conduct the field measurements in a mountain wind farm in Hebei Province, China. Under two different incoming wake conditions, the influence of wind shear, terrain and incoming wind characteristics on the development trend of wake was analyzed. The results showed that the existence of wind shear effect causes asymmetric distribution of wind speed in the wake region. The relief of the terrain behind the turbine indicated a subsidence of the wake centerline, which had a linear relationship with the topography altitudes. The wake recovery rates were calculated, which comprehensively validated the conclusion that the wake recovery rate is determined by both the incoming wind turbulence intensity in the wake and the magnitude of the wind speed.


2016 ◽  
Vol 20 (10) ◽  
pp. 1599-1611 ◽  
Author(s):  
Peng Hu ◽  
Yongle Li ◽  
Yan Han ◽  
CS Cai ◽  
Guoji Xu

Characteristics of wind fields over the gorge or valley terrains are becoming more and more important to the structural wind engineering. However, the studies on this topic are very limited. To obtain the fundamental characteristics information about the wind fields over a typical gorge terrain, a V-shaped simplified gorge, which was abstracted from some real deep-cutting gorges where long-span bridges usually straddle, was introduced in the present wind tunnel studies. Then, the wind characteristics including the mean wind speed, turbulence intensity, integral length scale, and the wind power spectrum over the simplified gorge were studied in a simulated atmospheric boundary layer. Furthermore, the effects of the oncoming wind field type and oncoming wind direction on these wind characteristics were also investigated. The results show that compared with the oncoming wind, the wind speeds at the gorge center become larger, but the turbulence intensities and the longitudinal integral length scales become smaller. Generally, the wind fields over the gorge terrain can be approximately divided into two layers, that is, the gorge inner layer and the gorge outer layer. The different oncoming wind field types have remarkable effects on the mean wind speed ratios near the ground. When the angle between the oncoming wind and the axis of the gorge is in a certain small range, such as smaller than 10°, the wind fields are very close to those associated with the wind direction of 0°. However, when the angle is in a larger range, such as larger than 20°, the wind fields in the gorge will significantly change. The research conclusions can provide some references for civil engineering practices regarding the characteristics of wind fields over the real gorge terrains.


2017 ◽  
Vol 17 (4B) ◽  
pp. 37-43
Author(s):  
Pham Xuan Thanh ◽  
Nguyen Xuan Anh ◽  
Le Van Luu ◽  
Hiep Van Nguyen ◽  
Hoang Hai Son ◽  
...  

In this paper, the characteristics of wind speed at 20 m height at the Bac Lieu atmospheric physic station (Bac Lieu station) in 2016 were evaluated using the Weibull distribution function. The wind speed data set (every minute) from January 7th  to December 31st, 2016 was used to calculate the two parameters of  Weibull function including Weibull shape factor “k” and Weibull scale factor “c”. The results showed that at the Bac Lieu station in 2016, the values of k and c were 1.69 and 3.91, respectively. Some characteristics of wind speed were also estimated such as wind energy density (Pa/A=57.3 W/m2), wind speed of maximum energy carrier (Vmec=6.2 m/s), the most probable wind speed (Vmp=2.3 m/s), mean wind speed (Vmean­=3.5 m/s)  and standard deviation of wind speeds (s = 2.1 m/s).


2019 ◽  
Vol 85 ◽  
pp. 03002
Author(s):  
Elena-Alexandra Chiulan ◽  
Andrei-Mugur Georgescu ◽  
Costin-Ioan Coşoiu ◽  
Anton Anton

The presented paper focuses on the computation of the mean wind speed and turbulence intensity profiles for all the cities from Romania. The calculation of both, the mean wind speed profile and the turbulence intensity profile, had as mathematical support the equations presented in the Romanian design standard for wind action CR 1-1-4/2012. The main objective of this paper was to provide a tool for the computation of the two wind action features. This method was based on creating a spreadsheet in Excel with which, in just a few seconds, a user could correctly obtain the two wind characteristics. This Excel dashboard can be used as a teaching material for students as well as input data for structural design engineers in the process of modelling and observing the behaviour of a building excited by wind action on a particular city in Romania.


2018 ◽  
Author(s):  
Mads Mølgaard Pedersen ◽  
Torben Juul Larsen ◽  
Helge Aagaard Madsen ◽  
Gunner Christian Larsen

Abstract. In this paper, inflow information is extracted from a measurement database and used for aeroelastic simulations to investigate if using more accurate inflow descriptions improves the accuracy of the simulated fatigue loads. The inflow information is extracted from the nearby met masts and a blade-mounted five-hole pitot tube. The met masts provide measurements of the inflow at fixed positions some distance away, whereas the pitot tube measures the inflow while rotating with the rotor. The met mast measures the free-inflow velocity, but the measured turbulence may evolve on its way to the turbine, pass besides the turbine, or the mast may be in the wake of the turbine. The inflow measured by the pitot tube, on the other hand, is very representative of the wind that acts on the turbine as it is measured close to the blades and includes variations within the rotor plane. This inflow is, however, affected by the presence of the turbine, and therefore an aerodynamic model is used to estimate the free-inflow velocities that would have been at the same time and position without the presence of the turbine. The inflow information used for the simulations includes the mean wind speed and trend, the turbulence intensity, wind shear profile, atmospheric stability dependent turbulence parameters, and azimuthal variations within the rotor plane. In addition, the instantly measured wind speed is used to constrain the turbulence. It is concluded that the period-specific turbulence intensity must be included in the aeroelastic simulations to make the range of the simulated fatigue loads representative for the range of the measured fatigue loads. Furthermore, it is found that the one-to-one correspondence between the measured and simulated fatigue loads is improved considerably by using inflow characteristics extracted from the pitot tube instead of the met-mast-based sensors as input for the simulations. Finally, the use of pitot-tube wind speed to constrain the turbulence is found to decrease the variation of the simulated loads due to different turbulence realisations (seeds), such that the need for multiple simulations is reduced.


2020 ◽  
Vol 9 (7) ◽  
pp. e298973984
Author(s):  
Anny Key de Souza Mendonça ◽  
Antonio Cezar Bornia

The wind power’ share in electricity generating capacity has increased significantly in recent years. Due to the variability in wind power generation, given the variations in wind speed and considering the increase in wind participation in the Brazilian energy matrix, a fact that reinforces the relevance of the source, this article aims to present the methods used to analyze the wind speed more used in the literature and to analyze the wind speed in several Brazilian cities. The logarithmic wind shear model was used to analyze mean wind speeds based on historical data of twelve Brazilian cities available to the public on the ESRL database for a period of eight years 2010 to 2018. The study showed that in localities such as Uruguaiana/RS, Campo Grande/MS, Uberlândia/MG, São Luiz/MA and Corumba/MS, mean wind speeds are strong in all altitudes of reference, with a gain of ± 2m/s of wind speed as the operational altitude increases. The logarithmic wind gain in high altitudes or low altitudes can be seen in z = 100 meters, where the mean wind speed found was Wn ≈ 8 m/s in Uruguaiana/RS and Campo Grande/MS, whereas in Manaus it was Wn ≈ 5 m/s. In Porto Alegre (RS), Florianópolis (SC), Curitiba/PR and Brasília/DF, the mean wind speed in altitudes ≥ 250 m becomes significant, allowing the implementation of wind farms if the technology proves to be economically feasible.


Author(s):  
Bryony L. DuPont ◽  
Jonathan Cagan ◽  
Patrick Moriarty

This paper presents a multi-level Extended Pattern Search algorithm (EPS) to optimize both the local positioning and geometry of wind turbines on a wind farm. Additionally, this work begins to draw attention to the effects of atmospheric stability on wind farm power development. The wind farm layout optimization problem involves optimizing the local position and size of wind turbines such that the aerodynamic effects of upstream turbines are reduced, thereby increasing the effective wind speed at each turbine, allowing it to develop more power. The extended pattern search, employed within a multi-agent system architecture, uses a deterministic approach with stochastic extensions to avoid local minima and converge on superior solutions compared to other algorithms. The EPS presented herein is used in an iterative, hierarchical scheme — an overarching pattern search determines individual turbine positioning, then a sub-level EPS determines the optimal hub height and rotor for each turbine, and the entire search is iterated. This work also explores the wind shear profile shape to better estimate the effects of changes in the atmosphere, specifically the changes in wind speed with respect to height on the total power development of the farm. This consideration shows how even slight changes in time of day, hub height, and farm location can impact the resulting power. The objective function used in this work is the maximization of profit. The farm installation cost is estimated using a data surface derived from the National Renewable Energy Laboratory (NREL) JEDI wind model. Two wind cases are considered: a test case utilizing constant wind speed and unidirectional wind, and a more realistic wind case that considers three discrete wind speeds and varying wind directions, each of which is represented by a fraction of occurrence. Resulting layouts indicate the effects of more accurate cost and power modeling, partial wake interaction, as well as the differences attributed to including and neglecting the effects of atmospheric stability on the wind shear profile shape.


2011 ◽  
Vol 243-249 ◽  
pp. 5094-5100 ◽  
Author(s):  
Ke Yang ◽  
Wen Hai Shi ◽  
Zheng Nong Li

This paper presents field measurement results of boundary layer wind characteristics over typical open country during the passages of typhoon Fung-wong passed by Wenzhou in July 2008. The field data such as wind speed and wind direction were measured from two propeller anemometers placed at the height of about 30m. The measured wind data are analyzed to obtain the information on mean wind speed and direction, turbulence intensity, gust factor, turbulence integral length scale and spectra of wind speed fluctuations. The results clearly demonstrate that the turbulence intensity and gust factor of typhoon Fung-wong are larger than normal, and there is a tendency for the turbulence intensities to decrease with the increase of the mean wind speed, however, there is another tendency for the turbulence integral length scale to increase with the increase of the mean wind speed. The power spectral densities of fluctuating wind speed in longitudinal and lateral directions obtained from the measured wind speed data roughly fit with Von Karman spectra. The results presented in this paper are expected to be of use to researchers and engineers involved in design of low-rise buildings.


Sign in / Sign up

Export Citation Format

Share Document