Light trapping enhancement via structure design

2020 ◽  
Vol 34 (06) ◽  
pp. 2050040
Author(s):  
Minyu Bai ◽  
Huan Liu ◽  
Fei Xie ◽  
Jijie Zhao ◽  
Weiguo Liu ◽  
...  

Light trapping is of great importance in many applications including photodetectors and solar cells. Silicon-based structures and hybrid devices were designed and studied to reduce reflection, thus enhance light trapping. The typical pillar array was analyzed concerning the pillar radius and distance between pillars first. The result showed that light reflection could be reduced from the range of 0.35–0.45 to the range of 0–0.3 with wavelength from 400 to 700 nm. What should be noted is that optimal size for light trapping changed when wavelength varied. Furthermore, hybrid structure was designed to increase light trapping. The results showed that the structure with random quantum dots (QDs) covering pillar array coated with two-dimensional (2D) material is an effective way to confine the light reflection under 0.1, thus promoting light trapping.

The Analyst ◽  
2021 ◽  
Author(s):  
Qianqian Zhao ◽  
Wenrong Cai ◽  
Bao-Zhu Yang ◽  
Zhengzhi Yin ◽  
Datong Wu ◽  
...  

Well dispersed chiral Ag2S quantum dots (Ag2S QDs) were facilely synthesized by using N-acetyl-L-cysteine (NALC) as the chiral ligand, which were loaded onto the nanosheets of two-dimensional (2D) few-layer carbon...


2021 ◽  
Vol 118 (4) ◽  
pp. 044002
Author(s):  
F. van Riggelen ◽  
N. W. Hendrickx ◽  
W. I. L. Lawrie ◽  
M. Russ ◽  
A. Sammak ◽  
...  

2014 ◽  
Vol 140 (8) ◽  
pp. 084701 ◽  
Author(s):  
Justin R. Caram ◽  
Haibin Zheng ◽  
Peter D. Dahlberg ◽  
Brian S. Rolczynski ◽  
Graham B. Griffin ◽  
...  

Author(s):  
Ketki Lichade ◽  
Yizhou Jiang ◽  
Yayue Pan

Abstract Recently, many studies have investigated additive manufacturing of hierarchical surfaces with high surface area/volume (SA/V) ratios, and their performance has been characterized for applications in next-generation functional devices. Despite recent advances, it remains challenging to design and manufacture high SA/V ratio structures with desired functionalities. In this study, we established the complex correlations among the SA/V ratio, surface structure geometry, functionality, and manufacturability in the Two-Photon Polymerization (TPP) process. Inspired by numerous natural structures, we proposed a 3-level hierarchical structure design along with the mathematical modeling of the SA/V ratio. Geometric and manufacturing constraints were modeled to create well-defined three-dimensional hierarchically structured surfaces with a high accuracy. A process flowchart was developed to design the proposed surface structures to achieve the target functionality, SA/V ratio, and geometric accuracy. Surfaces with varied SA/V ratios and hierarchy levels were designed and printed. The wettability and antireflection properties of the fabricated surfaces were characterized. It was observed that the wetting and antireflection properties of the 3-level design could be easily tailored by adjusting the design parameter settings and hierarchy levels. Furthermore, the proposed surface structure could change a naturally-hydrophilic surface to near-superhydrophobic. Geometrical light trapping effects were enabled and the antireflection property could be significantly enhanced (>80% less reflection) by the proposed hierarchical surface structures. Experimental results implied the great potential of the proposed surface structures for various applications such as microfluidics, optics, energy, and interfaces.


Sign in / Sign up

Export Citation Format

Share Document