On the exact and numerical solutions to the FitzHugh–Nagumo equation

2020 ◽  
Vol 34 (17) ◽  
pp. 2050149 ◽  
Author(s):  
Asıf Yokus

In this paper, with the help of a computer package program, the auto-Bäcklund transformation method (aBTM) and the finite forward difference method are used for obtaining the wave solutions and the numeric and exact approximations to the FitzHugh–Nagumo (F-N) equation, respectively. We successfully obtain some wave solutions to this equation by using aBTM. We then employ the finite difference method (FDM) in approximating the exact and numerical solutions to this equation by taking one of the obtained wave solutions into consideration. We also present the comparison between exact and numeric approximations and support the comparison with a graphic plot. Moreover, the Fourier von-Neumann stability analysis is used in checking the stability of the numeric scheme. We also present the [Formula: see text] and [Formula: see text] error norms of the solutions to this equation.

2018 ◽  
Vol 22 ◽  
pp. 01036 ◽  
Author(s):  
Tukur Abdulkadir Sulaiman ◽  
Asif Yokus ◽  
Nesrin Gulluoglu ◽  
Haci Mehmet Baskonus

With aid of the Wolfram Mathematica package, this study investigates the solutions of a nonlinear model with strong nonlinear- ity, namely; the Sharma-Tasso-Olver equation. We use the improved Bernoulli sub-equation function method in acquiring the analytical so- lution to this equation, we successfully obtain one-singular soliton so- lution with exponential function structure. Through the obtained ana- lytical solution, the finite forward difference method is used in approx- imating the exact and numerical solutions to this equation. We check the stability of the finite forward difference method with this equation using the Fourier-Von Neumann stability analysis. We find the L2 and L∞ norm error to the numerical approximation. We present the in- teresting 3D and 2D figures of the obtained singular soliton solution. We also plot the graphics of the numerical error, exact and numeri- cal approximations data obtained in this study by using the MATLAB package.


2020 ◽  
Vol 34 (29) ◽  
pp. 2050282
Author(s):  
Asıf Yokuş ◽  
Doğan Kaya

The traveling wave solutions of the combined Korteweg de Vries-modified Korteweg de Vries (cKdV-mKdV) equation and a complexly coupled KdV (CcKdV) equation are obtained by using the auto-Bäcklund Transformation Method (aBTM). To numerically approximate the exact solutions, the Finite Difference Method (FDM) is used. In addition, these exact traveling wave solutions and numerical solutions are compared by illustrating the tables and figures. Via the Fourier–von Neumann stability analysis, the stability of the FDM with the cKdV–mKdV equation is analyzed. The [Formula: see text] and [Formula: see text] norm errors are given for the numerical solutions. The 2D and 3D figures of the obtained solutions to these equations are plotted.


2018 ◽  
Vol 32 (29) ◽  
pp. 1850365 ◽  
Author(s):  
Asıf Yokuş

In this study, we investigate the nonlinear time-fractional Korteweg–de Vries (KdV) equation by using the (1/G[Formula: see text])-expansion method and the finite forward difference method. We first obtain the exact wave solutions of the nonlinear time-fractional KdV equation. In addition, we used the finite-forward difference method to obtain numerical solutions in this equations. When these solutions are obtained, the indexed forms of both Caputo and conformable derivatives are used. By using indexing technique, it is shown that the numerical results of the nonlinear time-fractional KdV equation approaches the exact solution. The two- and three-dimensional surfaces of the obtained analytical solutions are plotted. The von Neumann stability analysis of the used numerical scheme with the studied equation is carried out. The L2and L[Formula: see text] error norms are computed. The exact solutions and numerical approximations are compared by supporting with graphical plots and tables.


2018 ◽  
Vol 22 ◽  
pp. 01061 ◽  
Author(s):  
Asif Yokus ◽  
Tukur Abdulkadir Sulaiman ◽  
Haci Mehmet Baskonus ◽  
Sibel Pasali Atmaca

This study acquires the exact and numerical approximations of a reaction-convection-diffusion equation arising in mathematical bi- ology namely; Murry equation through its analytical solutions obtained by using a mathematical approach; the modified exp(-Ψ(η))-expansion function method. We successfully obtained the kink-type and singular soliton solutions with the hyperbolic function structure to this equa- tion. We performed the numerical simulations (3D and 2D) of the obtained analytical solutions under suitable values of parameters. We obtained the approximate numerical and exact solutions to this equa- tion by utilizing the finite forward difference scheme by taking one of the obtained analytical solutions into consideration. We investigate the stability of the finite forward difference method with the equation through the Fourier-Von Neumann analysis. We present the L2 and L∞ error norms of the approximations. The numerical and exact approx- imations are compared and the comparison is supported by a graphic plot. All the computations and the graphics plots in this study are car- ried out with help of the Matlab and Wolfram Mathematica softwares. Finally, we submit a comprehensive conclusion to this study.


2018 ◽  
Vol 22 (Suppl. 1) ◽  
pp. 153-158 ◽  
Author(s):  
Dogan Kaya ◽  
Sema Gulbahar ◽  
Asıf Yokus

Non-linear terms of the time-fractional KdV-Burgers-Kuramoto equation are linearized using by some linearization techniques. Numerical solutions of this equation are obtained with the help of the finite difference methods. Numerical solutions and corresponding analytical solutions are compared. The L2 and L? error norms are computed. Stability of given method is investigated by using the Von Neumann stability analysis.


Author(s):  
İhsan Çelikkaya

Abstract In this study, the numerical solutions of the modified Fornberg–Whitham (mFW) equation, which describes immigration of the solitary wave and peakon waves with discontinuous first derivative at the peak, have been obtained by the collocation finite element method using quintic trigonometric B-spline bases. Although there are solutions of this equation by semi-analytical and analytical methods in the literature, there are very few studies on the solution of the equation by numerical methods. Any linearization technique has not been used while applying the method. The stability analysis of the applied method is examined by the von-Neumann Fourier series method. To show the performance of the method, we have considered three test problems with nonhomogeneous boundary conditions having analytical solutions. The error norms L 2 and L ∞ are calculated to demonstrate the accuracy and efficiency of the presented numerical scheme.


Author(s):  
Y Alkhimenkov ◽  
L Khakimova ◽  
Y Y Podladchikov

Summary The efficient and accurate numerical modeling of Biot’s equations of poroelasticity requires the knowledge of the exact stability conditions for a given set of input parameters. Up to now, a numerical stability analysis of the discretized elastodynamic Biot’s equations has been performed only for a few numerical schemes. We perform the von Neumann stability analysis of the discretized Biot’s equations. We use an explicit scheme for the wave propagation and different implicit and explicit schemes for Darcy’s flux. We derive the exact stability conditions for all the considered schemes. The obtained stability conditions for the discretized Biot’s equations were verified numerically in one-, two- and three-dimensions. Additionally, we present von Neumann stability analysis of the discretized linear damped wave equation considering different implicit and explicit schemes. We provide both the Matlab and symbolic Maple routines for the full reproducibility of the presented results. The routines can be used to obtain exact stability conditions for any given set of input material and numerical parameters.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
M. A. Banaja ◽  
H. O. Bakodah

The equal width (EW) equation governs nonlinear wave phenomena like waves in shallow water. Numerical solution of the (EW) equation is obtained by using the method of lines (MOL) based on Runge-Kutta integration. Using von Neumann stability analysis, the scheme is found to be unconditionally stable. Solitary wave motion and interaction of two solitary waves are studied using the proposed method. The three invariants of the motion are evaluated to determine the conservation properties of the generated scheme. Accuracy of the proposed method is discussed by computing theL2andL∞error norms. The results are found in good agreement with exact solution.


Sign in / Sign up

Export Citation Format

Share Document