PREPARATION OF ADHERENT MnSix FILMS

2002 ◽  
Vol 16 (07) ◽  
pp. 205-215 ◽  
Author(s):  
Q. R. HOU ◽  
Z. M. WANG ◽  
Y. B. CHEN ◽  
Y. J. HE

The adhesion of manganese silicide ( MnSi x) films on silicon and glass substrates is studied by using the micro-scratch method. The films were prepared by electron beam evaporation and thermal evaporation. To improve adhesion of the films, several techniques including ion bombardment, increasing substrate temperature, and insertion of a silicon intermediate layer were used. Finally, adherent MnSi x(x~1.7) films were prepared through solid phase reaction as well as reactive deposition. The hardness and modulus of the MnSi x(x~1.7) film were measured by a nano-indenter and the values are 8.8±1.0 GPa and 141±15 GPa, respectively.

2019 ◽  
Vol 7 (5) ◽  
pp. 2283-2290 ◽  
Author(s):  
Thomas J. Routledge ◽  
Michael Wong-Stringer ◽  
Onkar S. Game ◽  
Joel A. Smith ◽  
James E. Bishop ◽  
...  

Perovskite solar cells utilising NiO and TiO2 charge-extraction layers, deposited via high-speed, low substrate-temperature reactive electron-beam evaporation, achieve 15.8% PCE.


1997 ◽  
Vol 113-114 ◽  
pp. 53-56 ◽  
Author(s):  
Jinliang Wang ◽  
Masaaki Hirai ◽  
Masahiko Kusaka ◽  
Motohiro Iwami

2010 ◽  
Vol 663-665 ◽  
pp. 743-750 ◽  
Author(s):  
Saleh N. Alamri ◽  
Ahamed A. Joraid

Smart windows were fabricated with different thicknesses of amorphous V2O5, which acts as an ion storage layer. In these devices, V2O5 was deposited by thermal evaporation at a substrate temperature of 200 oC, and an electrochromic layer (WO3) was deposited by electron beam evaporation at a substrate temperature of 250 oC. Both layers were amorphous. V2O5 was found to exhibit direct-forbidden electron transitions, whereas the WO3 layer exhibited indirect-allowed electron transitions. An increase in the thickness of V2O5 from 78 nm to 313 nm reduced the colouration efficiency from 64 to 48 cm2/C, and the time of the transmission variation curve from the coloured state to the bleached state was increased from 82.41 s to 558 s.


1999 ◽  
Vol 580 ◽  
Author(s):  
C.C. Theron ◽  
A. Falepin ◽  
S. Degroote ◽  
J. Dekoster ◽  
A. Vantomme ◽  
...  

AbstractBy analogy to reactive deposition epitaxy and titanium interlayer mediated epitaxy experiments, an attempt has been made to constrain the supply of reactants to the reaction interface in the solid phase reaction between Fe and Si. The goal being to change the normal phase formation sequence by using a suitable diffusion barrier, so that β-FeSi2 forms directly. Both Fe-V and Fe-Zr diffusion barriers were used to constrain the supply of the two reactants during Fe-silicide formation. Measurements with these barriers, show first phase formation of β-FeSi2, but direct formation of 3-FeSi2 as first phase has not been observed. In the case of the Fe-V diffusion barrier it was shown that the use of the diffusion barrier resulted in smoother layers of β-FeSi2 than could be formed by direct reaction of Fe on Si. In the case of the Fe-Zr barrier it is found that the barrier fails structurally at high temperatures. While it does prohibit Fe diffusion at low annealing temperatures, significant Si diffusion occurs prior to ε-FeSi formation.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 330
Author(s):  
Hengli Xiang ◽  
Genkuan Ren ◽  
Yanjun Zhong ◽  
Dehua Xu ◽  
Zhiye Zhang ◽  
...  

Fe3O4@C nanoparticles were prepared by an in situ, solid-phase reaction, without any precursor, using FeSO4, FeS2, and PVP K30 as raw materials. The nanoparticles were utilized to decolorize high concentrations methylene blue (MB). The results indicated that the maximum adsorption capacity of the Fe3O4@C nanoparticles was 18.52 mg/g, and that the adsorption process was exothermic. Additionally, by employing H2O2 as the initiator of a Fenton-like reaction, the removal efficiency of 100 mg/L MB reached ~99% with Fe3O4@C nanoparticles, while that of MB was only ~34% using pure Fe3O4 nanoparticles. The mechanism of H2O2 activated on the Fe3O4@C nanoparticles and the possible degradation pathways of MB are discussed. The Fe3O4@C nanoparticles retained high catalytic activity after five usage cycles. This work describes a facile method for producing Fe3O4@C nanoparticles with excellent catalytic reactivity, and therefore, represents a promising approach for the industrial production of Fe3O4@C nanoparticles for the treatment of high concentrations of dyes in wastewater.


2016 ◽  
Vol 697 ◽  
pp. 510-514 ◽  
Author(s):  
Feng Rui Zhai ◽  
Ke Shan ◽  
Ruo Meng Xu ◽  
Min Lu ◽  
Zhong Zhou Yi ◽  
...  

In the present paper, the ZrB2/h-BN multiphase ceramics were fabricated by SPS (spark plasma sintering) technology at lower sintering temperature using h-BN, ZrO2, AlN and Si as raw materials and B2O3 as a sintering aid. The phase constitution and microstructure of specimens were analyzed by XRD and SEM. Moreover, the effects of different sintering pressures on the densification, microstructure and mechanical properties of ZrB2/h-BN multiphase ceramics were also systematically investigated. The results show that the ZrB2 was obtained through solid phase reaction at different sintering pressures, and increasing sintering pressure could accelerate the formation of ZrB2 phase. As the sintering pressure increasing, the fracture strength and toughness of the sintered samples had a similar increasing tendency as the relative density. The better comprehensive properties were obtained at given sintering pressure of 50MPa, and the relative density, fracture strength and toughness reached about 93.4%, 321MPa and 3.3MPa·m1/2, respectively. The SEM analysis shows that the h-BN grains were fine and uniform, and the effect of sintering pressure on grain size was inconspicuous. The distribution of grain is random cross array, and the fracture texture was more obvious with the increase of sintering pressure. The fracture mode of sintered samples remained intergranular fracture mechanism as sintering pressure changed, and the grain refinement, grain pullout and crack deflection helped to increase the mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document