INFLUENCE OF ELECTRIC FIELD ON THE BINDING ENERGY OF HYDROGENIC IMPURITY WITH SPATIALLY DEPENDENT MASS IN NITRIDE PARABOLIC QUANTUM WELLS

2007 ◽  
Vol 21 (05) ◽  
pp. 279-286 ◽  
Author(s):  
FENG-QI ZHAO ◽  
JIAN GONG

The ground state and binding energies of the hydrogenic impurity in a finite GaN/Al x Ga 1-x N parabolic quantum well (PQW) are investigated by using variational method. The effect of an electric field and spatial dependence effective mass (SDEM) are considered in the calculation. The results indicate that the effect of the SDEM on the energy levels is more obvious in the case of the narrower well width L. The effects decrease with increasing L, and tend to zero. The electric field shifts the energy levels towards lower energies with increasing well width L. Furthermore the ground state binding energy of the hydrogenic impurity in GaN/Al x Ga 1-x N PQWs is larger than that in GaAs/Al x Ga 1-x As PQWs. Therefore, we affirm that there is stronger quantum confinement effect in GaN/Al x Ga 1-x N PQW.

2004 ◽  
Vol 18 (22) ◽  
pp. 2991-2999 ◽  
Author(s):  
FENG-QI ZHAO ◽  
ZI-ZHENG GUO

The free polaron energy levels in finite GaAs / Al x Ga 1-x As parabolic quantum wells have been investigated by a modified variational method. The effect of the electric field, the electron-phonon interaction including the longitudinal optical phonons and the four branches of interface optical phonons, and the effect of spatial dependent effective mass have been considered in the calculation. The dependence of the energies of free polarons on the alloy composition x is given. The numerical results for finite GaAs / Al x Ga 1-x As parabolic quantum wells are obtained and discussed. The results show that the effect of the electric field and the interface optical phonons as well as the longitudinal optical phonons on the energy levels is obvious. One can find that the effect of the spatially dependent effective masses on the energy levels in finite parabolic quantum wells is considerable except for large well width. Thus, the electron-phonon interaction and the effect of the spatially dependent effective mass should not be neglected for the study of the electron state problem in finite parabolic quantum wells.


2019 ◽  
Vol 33 (32) ◽  
pp. 1950386
Author(s):  
Shi-Hua Chen

The first-excited-state (ES) binding energy of hydrogenic impurity bound polaron in an anisotropic quantum dot (QD) is obtained by constructing a variational wavefunction under the action of a uniform external electric field. As for a comparison, the ground-state (GS) binding energy of the system is also included. We apply numerical calculations to KBr QD with stronger electron–phonon (E–P) interaction in which the new variational wavefunction is adopted. We analyzed specifically the effects of electric field and the effects of both the position of the impurity and confinement lengths in the xy-plane and the [Formula: see text] direction on the ground and the first-ES binding energies (BEs). The results show that the selected trial wavefunction in the ES is appropriate and effective for the current research system.


2012 ◽  
Vol 26 (26) ◽  
pp. 1250172 ◽  
Author(s):  
JUN ZHU ◽  
SHI LIANG BAN ◽  
SI HUA HA

The ground state binding energies of donor impurities in strained [0001]-oriented wurtzite GaN / Al x Ga 1-x N asymmetric double quantum wells are investigated using a variational method combined with numerical computation. The built-in electric field due to the spontaneous and strain-induced piezoelectric polarization and the strain modification on material parameters are taken into account. The variations of binding energies versus the width of central barrier, the ratio of two well widths, and the impurity position are presented, respectively. It is found that the built-in electric field causes a mutation of binding energies with increasing the width of central barrier to some value. The results for symmetrical double quantum wells and without the built-in electric field are also discussed for comparison.


2010 ◽  
Vol 24 (22) ◽  
pp. 4293-4304 ◽  
Author(s):  
SHENG WANG ◽  
GUOZHU WEI ◽  
GUANGYU YI

The ground-state binding energies of a hydrogenic impurity in cylindrical quantum dots (QDs) subjected to external electric and magnetic fields are investigated using the finite-difference method within the quasi-one-dimensional effective potential model. The QD is modeled by superposing a square-well potential and a strong lateral confinement potential by the combination of a parabolic potential and a changeable magnetic field. We define an effective radius of a cylindrical QD which can describe the strength of the lateral confinement. The effects of the electric fields are less important when the effective radius is very tiny, and the effects are manifested as the effective radius increases. Meanwhile, one finds that the binding energies highly depend on the impurity positions under the applied transverse fields. When the impurity is located at the right half of the cylinder, the electric field pushes the electron to the left side, then the binding energy decreases; when the impurity is located at the left, the binding energy first increases and reaches a peak value, then deceases with the electric field.


2010 ◽  
Vol 24 (28) ◽  
pp. 2793-2801
Author(s):  
ZAIPING ZENG ◽  
SHUYI WEI ◽  
JINGBO WEI

Based on the effective-mass approximation, considering the built-in electric field effect due to the spontaneous and piezoelectric polarizations, the ground-state donor binding energy of a hygrogenic impurity in a cylindrical wurzite (WZ) ZnO / MgZnO strained quantum dot (QD) is investigated variationally. Numerical results show that the ground-state donor binding energy is highly dependent on the Mg composition, the impurity positions and the QD size. The built-in electric field also induces an asymmetric distribution of the ground-state donor binding energy with respect to the center of the QD. In particular, it is found that the ground-state donor binding energy is insensible to the dot height when the impurity is located at the right boundary of the WZ ZnO / MgZnO strained QD if the dot height is large.


The r. m. s. radius and the binding energy of oxygen 16 are calculated for several different internueleon potentials. These potentials all fit the low-energy data for two nucleons, they have hard cores of differing radii, and they include the Gammel-Thaler potential (core radius 0·4 fermi). The calculated r. m. s. radii range from 1·5 f for a potential with core radius 0·2 f to 2·0 f for a core radius 0·6 f. The value obtained from electron scattering experiments is 2·65 f. The calculated binding energies range from 256 MeV for a core radius 0·2 f to 118 MeV for core 0·5 f. The experimental value of binding energy is 127·3 MeV. The 25% discrepancy in the calculated r. m. s. radius may be due to the limitations of harmonic oscillator wave functions used in the unperturbed system.


2021 ◽  
Vol 16 (1) ◽  
pp. 97-103
Author(s):  
Xin-Nan Li ◽  
Guang-Xin Wang ◽  
Xiu-Zhi Duan

A variational approach is utilized to investigated the electron-impurity interaction in zinc-blende (In,Ga)N-GaN strained coupled quantum wells. The donor imputrity states are studied in consideration of the effects of hydrostatic pressure and external electric field. Our results indicate that the binding energy visibly depends on hydrostatic pressure, strain of coupled quantum wells, and applied electric field. The binding energy demonstrates a peak value with the reduction of the left-well width, and which displays a minimum value with the increment of the middle-barrier width. A decreasing behavior on the binding energy is also demonstrated when the right-well width enhances. Also the binding energy augments constantly with the increasing hydrostatic pressure. Besides, the dependency of the binding energy on variation of impurity position has been analyzed detailedly.


Sign in / Sign up

Export Citation Format

Share Document