Sterilization by negative and positive DC plasma with a micro discharge gap at atmospheric pressure

2017 ◽  
Vol 31 (32) ◽  
pp. 1750296 ◽  
Author(s):  
Hua Li ◽  
Lin-Xiu Jiang ◽  
Yong-Rong Jiang ◽  
Jian-Min Zhu ◽  
Zhen-Cheng Chen

A new needle-to-droplet electrode structure with a micro discharge gap (2 mm) was designed to achieve direct current (DC) discharge plasma in ambient air with the aim of using the plasma to sterilize liquids. Without using noble gases or an external air flow, we succeeded in generating both a negative and positive DC plasma at atmospheric pressure. The plasma was driven by a 0 to −20,000 V, 100 W DC power supply. A stainless steel needle with a tip diameter of [Formula: see text] and a 200-[Formula: see text] droplet of bacteria-containing liquid served as the electrodes. At atmospheric pressure and room temperature (23[Formula: see text]C), utilizing the negative DC plasma, the discharge time lasted 10 s; the results showed that the higher the discharge voltage, the more efficient the sterilization effect. Conversely, when we applied a voltage of −5.5 kV, we found that the sterilization effect was more efficient for longer discharge times. Our findings demonstrate that Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis) can be killed in about 30 s. Our experiments show that our sterilization method required less time and was more efficient for positive than for negative DC plasma under the same conditions.

2013 ◽  
Vol 5 (1) ◽  
pp. 2 ◽  
Author(s):  
Su-Jin Sung ◽  
Jung-Bo Huh ◽  
Mi-Jung Yun ◽  
Brian Myung W. Chang ◽  
Chang-Mo Jeong ◽  
...  

2016 ◽  
Vol 383 ◽  
pp. 261-267 ◽  
Author(s):  
Tao Wang ◽  
Bin Yang ◽  
Xiang Chen ◽  
Xiaolin Wang ◽  
Chunsheng Yang ◽  
...  

2017 ◽  
Vol 26 (8) ◽  
pp. 085207 ◽  
Author(s):  
Cheng Wang ◽  
Zelong Zhang ◽  
Haichao Cui ◽  
Weiluo Xia ◽  
Weidong Xia

Author(s):  
Wesley R. Bussman ◽  
Charles E. Baukal

Because process heaters are typically located outside, their operation is subject to the weather. Heaters are typically tuned at a given set of conditions; however, the actual operating conditions may vary dramatically from season to season and sometimes even within a given day. Wind, ambient air temperature, ambient air humidity, and atmospheric pressure can all significantly impact the O2 level, which impacts both the thermal efficiency and the pollution emissions from a process heater. Unfortunately, most natural draft process burners are manually controlled on an infrequent basis. This paper shows how changing ambient conditions can considerably impact both CO and NOx emissions if proper adjustments are not made as the ambient conditions change. Data will be presented for a wide range of operating conditions to show how much the CO and NOx emissions can be affected by changes in the ambient conditions for fuel gas fired natural draft process heaters, which are the most common type used in the hydrocarbon and petrochemical industries. Some type of automated burner control, which is virtually non-existent today in this application, is recommended to adjust for the variations in ambient conditions.


2014 ◽  
Vol 989-994 ◽  
pp. 1200-1203
Author(s):  
Ye Lin Hu ◽  
Qiu Wang ◽  
Zhao Quan Chen

In order to obtain stable cold plasma jet under atmospheric pressure condition, we designed a high-voltage DC power supply based on the principle of multilayer piezoelectric ceramic transformer (MPT). At the same time, we developed a cold plasma jet device that its shape is similar to the gun structure. The total weight of device, including the power supply and the generator, is less than 500 g. In the experiments of argon plasma under atmospheric pressure, current–voltage measurements show that the discharge actually appears periodically pulsed with a frequency of about 30 kHz. The discharge current has a pulse-width that is about 100 ns, while its peak value reaches about 32 mA. The maximum length of the plasma is about 3 cm. The further study showed that the discharge current pulse frequency is determined by the ion drift mechanism.


2014 ◽  
Vol 42 (4) ◽  
pp. 911-916 ◽  
Author(s):  
Zhen Zheng ◽  
Zhaoquan Chen ◽  
Pei Liu ◽  
Ming Chen ◽  
Guodong Wang ◽  
...  

2021 ◽  
pp. 17-23

The paper considers the possibility of obtaining nanocrystalline cellulose (NCC) by gas-discharge treatment of aqueous suspensions of microcrystalline cellulose or filter paper. For processing, a direct current discharge was used at atmospheric pressure with a wa-ter cathode at a discharge current of 35 mA and a discharge voltage of 1500 V. It was found that the plasma-chemical treatment of cellulose-containing material in water without the use of other reagents leads to the release of NCC with relatively large parti-cle sizes and a small surface charge.


2020 ◽  
Vol 47 (10) ◽  
pp. 1002002
Author(s):  
宋力 Song Li ◽  
顿爱欢 Dun Aihuan ◽  
王哲 Wang Zhe ◽  
吴伦哲 Wu Lunzhe ◽  
彭冰 Peng Bing ◽  
...  

2020 ◽  
Vol 384 (19) ◽  
pp. 126497 ◽  
Author(s):  
G. Veda Prakash ◽  
Kiran Patel ◽  
Narayan Behera ◽  
Ajai Kumar

Sign in / Sign up

Export Citation Format

Share Document