Effects of Atmospheric Pressure Plasma Electrode Structure on Silicon Carbide Removal Function

2020 ◽  
Vol 47 (10) ◽  
pp. 1002002
Author(s):  
宋力 Song Li ◽  
顿爱欢 Dun Aihuan ◽  
王哲 Wang Zhe ◽  
吴伦哲 Wu Lunzhe ◽  
彭冰 Peng Bing ◽  
...  
2008 ◽  
Vol 600-603 ◽  
pp. 843-846 ◽  
Author(s):  
Takehiro Kato ◽  
Yasuhisa Sano ◽  
Hideyuki Hara ◽  
Hidekazu Mimura ◽  
Kazuya Yamamura ◽  
...  

Beveling is essential for preventing the chipping of the edge of a wafer during surface polishing and other processes. Plasma chemical vaporization machining (PCVM) is an atmospheric-pressure plasma etching process. It has a high removal rate equivalent to those of conventional machining methods such as grinding and lapping, which are used for high-hardness materials such as silicon carbide, due to the generation of high-density radicals in atmospheric-pressure plasma. Furthermore, PCVM does not damage the wafer surface because it is a purely chemical process; therefore, it is considered that PCVM can be used as an effective method of beveling the edge of SiC wafers. In this paper, we report the investigation of the beveling of SiC wafers by PCVM.


2012 ◽  
Vol 516 ◽  
pp. 108-112 ◽  
Author(s):  
Yasuhisa Sano ◽  
Kohei Aida ◽  
Hiroaki Nishikawa ◽  
Kazuya Yamamura ◽  
Satoshi Matsuyama ◽  
...  

Silicon carbide (SiC) power devices have received much attention in recent years because they enable the fabrication of devices with low power consumption. To reduce the on-resistance in vertical power transistors, back-side thinning is required after device processing. However, it is difficult to thin a SiC wafer with a high removal rate by conventional mechanical machining because its high hardness and brittleness cause cracking and chipping during thinning. In this study, we attempted to thin a SiC wafer by plasma chemical vaporization machining (PCVM), which is plasma etching using atmospheric-pressure plasma. The wafer level thinning of a 2-inch 4H-SiC wafer has been possible without a removal thickness distribution caused by the circular shape of the wafer using the newly developed PCVM apparatus for back-side thinning with a spatial wafer stage.


2008 ◽  
Vol 600-603 ◽  
pp. 847-850 ◽  
Author(s):  
Yasuhisa Sano ◽  
Masayo Watanabe ◽  
Takehiro Kato ◽  
Kazuya Yamamura ◽  
Hidekazu Mimura ◽  
...  

Silicon carbide (SiC) is a promising semiconductor material for power devices. However, it is extremely hard and chemically stable; thus there is no efficient method of machining it without causing damage to the machined surface. Plasma chemical vaporization machining (PCVM) is plasma etching in atmospheric-pressure plasma. PCVM has a high removal rate because the radical density in atmospheric-pressure plasma is much higher than that in conventional low-pressure plasma. Although it was found that the machining characteristic of SiC by PCVM had stronger rf power dependence than that of Si, it has not been clear whether it is radical density dependence or temperature dependence. In this paper, the temperature dependences of the PCVM of Si and SiC are examined using pipe electrode apparatus. As a result, it is found that the removal rate of SiC has a much stronger temperature dependence than that of Si and that the surface roughness of the SiC Si face becomes worse as the etching temperature increases whereas that of the C face does not increase at etching temperatures of up to 360°C.


CIRP Annals ◽  
2015 ◽  
Vol 64 (1) ◽  
pp. 129-132 ◽  
Author(s):  
Kazutoshi Katahira ◽  
Hitoshi Ohmori ◽  
Shogo Takesue ◽  
Jun Komotori ◽  
Kazuo Yamazaki

2013 ◽  
Vol 5 (11) ◽  
pp. 4725-4730 ◽  
Author(s):  
Victor Rodriguez-Santiago ◽  
Lionel Vargas-Gonzalez ◽  
Andres A. Bujanda ◽  
Jose A. Baeza ◽  
Michelle S. Fleischman ◽  
...  

2010 ◽  
Vol 49 (8) ◽  
pp. 08JJ03 ◽  
Author(s):  
Yasuhisa Sano ◽  
Takehiro Kato ◽  
Kazuya Yamamura ◽  
Hidekazu Mimura ◽  
Satoshi Matsuyama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document