The Research of Atmospheric Pressure Cold Plasma Jet Generated by Auto-Excited-Pulsed DC Discharge

2014 ◽  
Vol 989-994 ◽  
pp. 1200-1203
Author(s):  
Ye Lin Hu ◽  
Qiu Wang ◽  
Zhao Quan Chen

In order to obtain stable cold plasma jet under atmospheric pressure condition, we designed a high-voltage DC power supply based on the principle of multilayer piezoelectric ceramic transformer (MPT). At the same time, we developed a cold plasma jet device that its shape is similar to the gun structure. The total weight of device, including the power supply and the generator, is less than 500 g. In the experiments of argon plasma under atmospheric pressure, current–voltage measurements show that the discharge actually appears periodically pulsed with a frequency of about 30 kHz. The discharge current has a pulse-width that is about 100 ns, while its peak value reaches about 32 mA. The maximum length of the plasma is about 3 cm. The further study showed that the discharge current pulse frequency is determined by the ion drift mechanism.

2013 ◽  
Vol 791-793 ◽  
pp. 1841-1844 ◽  
Author(s):  
Ye Lin Hu ◽  
Zhi Wen Du ◽  
Zhao Quan Chen

This paper discusses a lithium battery-driven cold plasma jet at atmospheric pressure with a pulsed power supply of design and its simulation. H.V. DC(High voltage directed current) and pulsed discharge circuit comprise of the entire pulse power system. H.V. DC circuit using TIs TMS320F28335 chips as the core of the circuit control module, the chip improves the stability of the H.V.DC circuits. Pulsed discharge circuit design plays a crucial impact on the formation of the narrowed pulses. A new double pulsed discharge circuit is designed by the proposed program. As discharge experiment shown finally, the steep narrowed pulse of pulsed power supply can be used to stabilize the output of the pulsed front.


2011 ◽  
Vol 13 (5) ◽  
pp. 575-582 ◽  
Author(s):  
Xiaomeng Fei ◽  
Shin-ichi Kuroda ◽  
Yuki Kondo ◽  
Tamio Mori ◽  
Katsuhiko Hosoi

Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2119
Author(s):  
Chi-Feng Su ◽  
Chih-Tung Liu ◽  
Jong-Shinn Wu ◽  
Ming-Tzu Ho

This paper presents the design and implementation of a miniaturized high-voltage power supply with power factor correction (PFC) for atmospheric-pressure plasma jet (APPJ) applications. The sinusoidal output frequency and voltage of the power supply can be controlled independently from 16 to 24 kHz and from 1 to 10 kVpeak, respectively. A helium APPJ load is used to assess the performance of the developed power supply. It is shown that the developed high-voltage power supply operates effectively, and the designed PFC converter improves the input current distortion of the power supply. Not only the power factor of the power supply is increased from 0.41 to 0.95, but it also provides a low-ripple DC voltage, which reduces the high-voltage ripple of the output from 730 to 50 Vp-p. In this paper, the proposed design integrates the PFC converter into the high-voltage power supply so that the developed power supply has better electrical characteristics and the overall power supply can be significantly miniaturized.


2019 ◽  
Vol 14 (29) ◽  
pp. 101-106
Author(s):  
Kadhim A. Aadim

Non-thermal argon plasma needle at atmospheric pressure wasconstructed. The experimental setup was based on a simple and lowcost electric component that generates a sufficiently high electricfield at the electrodes to ionize the argon gas which flow atatmospheric pressure. A high AC power supply was used with 1.1kV and 19.57 kHz. Non-thermal Argon plasma used on bloodsamples to show the ability of non-thermal plasma to promote bloodcoagulation. Three tests have been done to show the ability of plasmato coagulate both normal and anti-coagulant blood. Each bloodsample has been treated for varying time from 20sec. to 180sec. atdifferent distances. The results of the current study showed that thecold plasma produced from argon significantly increase the in vitrospeed of blood coagulation, the plasma increases activation andaggregation of platelets, causes proliferation of fibroblasts and fibrinproduction accelerates blood coagulation.


2013 ◽  
Vol 62 (3) ◽  
pp. 453-458
Author(s):  
Woo Seok Kang ◽  
Min Hur ◽  
Young-Hoon Song

Plasma ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 189-200 ◽  
Author(s):  
Lawan Ly ◽  
Sterlyn Jones ◽  
Alexey Shashurin ◽  
Taisen Zhuang ◽  
Warren Rowe ◽  
...  

The use of plasma energy has expanded in surgery and medicine. Tumor resection in surgery and endoscopy has incorporated the use of a plasma scalpel or catheter for over four decades. A new plasma energy has expanded the tools in surgery: Cold Atmospheric Plasma (CAP). A cold plasma generator and handpiece are required to deliver the CAP energy. The authors evaluated a new Cold Plasma Jet System. The Cold Plasma Jet System consists of a USMI Cold Plasma Conversion Unit, Canady Helios Cold Plasma® Scalpel, and the Canady Plasma® Scalpel in Hybrid and Argon Plasma Coagulation (APC) modes. This plasma surgical system is designed to remove the target tumor with minimal blood loss and subsequently spray the local area with cold plasma. In this study, various operational parameters of the Canady Plasma® Scalpels were tested on ex vivo normal porcine liver tissue. These conditions included various gas flow rates (1.0, 3.0, 5.0 L/min), powers (20, 40, 60 P), and treatment durations (30, 60, 90, 120 s) with argon and helium gases. Plasma length, tissue temperature changes, and depth and eschar injury magnitude measurements resulting from treatment were taken into consideration in the comparison of the scalpels. The authors report that a new cold plasma jet technology does not produce any thermal damage to normal tissue.


2018 ◽  
Vol 39 (4) ◽  
pp. 547-554
Author(s):  
唐蕾 TANG Lei ◽  
王永杰 WANG Yong-jie ◽  
袁春琪 YUAN Chun-qi ◽  
尹增谦 YIN Zeng-qian

Sign in / Sign up

Export Citation Format

Share Document