New soliton solutions of conformable time fractional Caudrey–Dodd–Gibbon–Sawada–Kotera equation in modeling wave phenomena

2019 ◽  
Vol 33 (18) ◽  
pp. 1950202 ◽  
Author(s):  
S. Saha Ray

In this paper, new traveling wave solutions of time fractional Caudrey–Dodd–Gibbon–Sawada–Kotera (CDGSK) equation have been revealed by the help of extended Kudryashov’s method. In this case, the time fractional derivative has been considered in the sense of conformable fractional derivative. The salient feature of the proposed extended Kudryashov’s method is to take full advantage of solutions for the Riccati and the Bernoulli equations involving parameters. Using some particular wave transformation, the given equation is converted to the nonlinear ODE by the help of chain rule and the derivative of a composite function; and then, a novel analytical method viz. extended Kudryashov’s method has been used to solve the resulting equation. Consequently, some new exact solutions have been successfully obtained. The exact solutions devised by the proposed method manifest that the proposed method is effective and easy to implement.

2020 ◽  
Vol 30 (01) ◽  
pp. 2050004 ◽  
Author(s):  
Jianli Liang ◽  
Longkun Tang ◽  
Yonghui Xia ◽  
Yi Zhang

In 2014, Khalil et al. [2014] proposed the conformable fractional derivative, which obeys chain rule and the Leibniz rule. In this paper, motivated by the monograph of Jibin Li [Li, 2013], we study the exact traveling wave solutions for a class of third-order MKdV equations with the conformable fractional derivative. Our approach is based on the bifurcation theory of planar dynamical systems, which is much different from the simplest equation method proposed in [Chen & Jiang, 2018]. By employing the traveling wave transformation [Formula: see text] [Formula: see text], we reduce the PDE to an ODE which depends on the fractional order [Formula: see text], then the analysis depends on the order [Formula: see text]. Moreover, as [Formula: see text], the exact solutions are consistent with the integer PDE. However, in all the existing papers, the reduced ODE is independent of the fractional order [Formula: see text]. It is believed that this method can be applicable to solve the other nonlinear differential equations with the conformable fractional derivative.


2017 ◽  
Vol 21 (4) ◽  
pp. 1681-1687 ◽  
Author(s):  
Xiao-Min Wang ◽  
Su-Dao Bilige ◽  
Yue-Xing Bai

A Burgers-like equation is studied by a general sub-equation method, and some new exact solutions are obtained, which include the traveling wave solutions, non-traveling wave solutions, multi-soliton solutions, rational solutions, and other types of solutions. The obtained results are important in thermal science, and potential applications can be found.


2006 ◽  
Vol 61 (1-2) ◽  
pp. 1-6 ◽  
Author(s):  
Zonghang Yang

Nonlinear partial differential equations are widely used to describe complex phenomena in various fields of science, for example the Korteweg-de Vries-Kuramoto-Sivashinsky equation (KdV-KS equation) and the Ablowitz-Kaup-Newell-Segur shallow water wave equation (AKNS-SWW equation). To our knowledge the exact solutions for the first equation were still not obtained and the obtained exact solutions for the second were just N-soliton solutions. In this paper we present kinds of new exact solutions by using the extended tanh-function method.


2021 ◽  
pp. 2150417
Author(s):  
Kalim U. Tariq ◽  
Mostafa M. A. Khater ◽  
Muhammad Younis

In this paper, some new traveling wave solutions to the conformable time-fractional Wu–Zhang system are constructed with the help of the extended Fan sub-equation method. The conformable fractional derivative is employed to transform the fractional form of the system into ordinary differential system with an integer order. Some distinct types of figures are sketched to illustrate the physical behavior of the obtained solutions. The power and effective of the used method is shown and its ability for applying different forms of nonlinear evolution equations is also verified.


2018 ◽  
Vol 32 (02) ◽  
pp. 1850012 ◽  
Author(s):  
Jiangen Liu ◽  
Yufeng Zhang

This paper gives an analytical study of dynamic behavior of the exact solutions of nonlinear Korteweg–de Vries equation with space–time local fractional derivatives. By using the improved [Formula: see text]-expansion method, the explicit traveling wave solutions including periodic solutions, dark soliton solutions, soliton solutions and soliton-like solutions, are obtained for the first time. They can better help us further understand the physical phenomena and provide a strong basis. Meanwhile, some solutions are presented through 3D-graphs.


2012 ◽  
Vol 2012 ◽  
pp. 1-9
Author(s):  
Wenbin Zhang ◽  
Jiangbo Zhou ◽  
Sunil Kumar

Employing the classical Lie method, we obtain the symmetries of the ZK-BBM equation. Applying the given Lie symmetry, we obtain the similarity reduction, group invariant solution, and new exact solutions. We also obtain the conservation laws of ZK-BBM equation of the corresponding Lie symmetry.


2019 ◽  
Vol 33 (09) ◽  
pp. 1950106 ◽  
Author(s):  
Behzad Ghanbari

In this paper, some new traveling wave solutions to the Hirota–Maccari equation are constructed with the help of the newly introduced method called generalized exponential rational function method. Several families of exact solutions are found corresponding to the equation. To the best of our knowledge, these solutions are new, and have never been addressed in the literature. The graphical interpretation of the solutions is also depicted. Moreover, it is contemplated that the proposed technique can also be employed to another sort of complex models.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yinghui He ◽  
Yun-Mei Zhao ◽  
Yao Long

The F-expansion method is used to find traveling wave solutions to various wave equations. By giving more solutions of the general subequation, an extended F-expansion method is introduced by Emmanuel. In our work, a generalized KdV type equation of neglecting the highest-order infinitesimal term, which is an important water wave model, is discussed by using the extended F-expansion method. And when the parameters satisfy certain relations, some new exact solutions expressed by Jacobi elliptic function, hyperbolic function, and trigonometric function are obtained. The related results are enriched.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2017
Author(s):  
Sadullah Bulut ◽  
Mesut Karabacak ◽  
Hijaz Ahmad ◽  
Sameh Askar

In this study, first, fractional derivative definitions in the literature are examined and their disadvantages are explained in detail. Then, it seems appropriate to apply the (G′G)-expansion method under Atangana’s definition of β-conformable fractional derivative to obtain the exact solutions of the space–time fractional differential equations, which have attracted the attention of many researchers recently. The method is applied to different versions of (n+1)-dimensional Kadomtsev–Petviashvili equations and new exact solutions of these equations depending on the β parameter are acquired. If the parameter values in the new solutions obtained are selected appropriately, 2D and 3D graphs are plotted. Thus, the decay and symmetry properties of solitary wave solutions in a nonlocal shallow water wave model are investigated. It is also shown that all such solitary wave solutions are symmetrical on both sides of the apex. In addition, a close relationship is established between symmetric and propagated wave solutions.


2019 ◽  
Vol 33 (28) ◽  
pp. 1950338 ◽  
Author(s):  
Hadi Rezazadeh ◽  
Alper Korkmaz ◽  
Mostafa M. A. Khater ◽  
Mostafa Eslami ◽  
Dianchen Lu ◽  
...  

In this paper, the extended rational sinh-cosh method (ERSCM) and modified Khater method are applied to the biological population model to derive new exact solutions. Moreover, the stability property of some obtained solutions is discussed to show the ability of them for using in the model’s applications. Implementation of the direct algebraic methods, the equations derived by substitution of the predicted solution are solved. It is significant to point out that new traveling wave solutions are found. The present methods are easy to employ and sufficient to determine the solutions.


Sign in / Sign up

Export Citation Format

Share Document