Optical solitons for the Kaup–Newell equation by collective variables method

Author(s):  
A. A. Al Qarni ◽  
A. A. Alshaery ◽  
H. O. Bakodah

In this work, we present a collective variable (CV) approach to establish dispersive solitary wave solutions for the Kaup–Newell Equation (KNE). The full CV theory has been utilized to enunciate the soliton molecules through its ground-laying parameters including the power of each pulse, phase and center-of-mass. Additionally, the dynamics of an ultra short pulse has been analyzed by using CV. This work may be utilized for various dynamics of solitons as well as the influence the amplitude, temporal position, frequency, phase and chirp on the solitons’ nonlinear parameters. Moreover, the numerical simulations have been designed by means of appropriate parameter values to explain more on the obtained results.

2000 ◽  
Vol 175 (4-6) ◽  
pp. 409-418 ◽  
Author(s):  
R. Jason Jones ◽  
Jean-Claude Diels ◽  
Jayesh Jasapara ◽  
Wolfgang Rudolph

2021 ◽  
Author(s):  
Zara Hassan ◽  
Nauman Raza ◽  
Francisco Gomez

Abstract The objective of this research is to study the collective variable (CV) technique to explore an important form of Schrödinger equation known as the Gerdjikov-Ivanov (GI) equation which expresses the dynamics of solitons for optical fibers in terms of pulse parameters. These parameters are temporal position, amplitude, width, chirp, phase, and frequency known as collective variables (CVs). This is an effective and dynamic mathematical gadget to obtain soliton solutions of non-dimensional as well as perturbed GI equations. Moreover, an established numerical scheme that is the fourth-order Runge-Kutta method is exerted for the numerical simulation of the revealing coupled system of six ordinary differential equations which represent all the CVs included in the pulse ansatz. The CV approach is used to determine the evolution of pulse parameters with the propagation distance and illustrated it illustrated it graphically. Furthermore, Figures show the compelling periodic oscillations of pulse chirp, width, frequency and amplitude of soliton. For various values of super-Gaussian pulse parameters, the numerical behavior of solitons to illustrate variations in CVs is provided. Other significant aspects with regards to the current investigation are also inferred.


2017 ◽  
Vol 26 (02) ◽  
pp. 1750023 ◽  
Author(s):  
S. Nse Biyoghe ◽  
Th. B. Ekogo ◽  
A.-B. Moubissi

We present a description of soliton molecules in terms of its collective variables namely temporal separation between two consecutive pulses, peak-power of each pulse, center-of-mass, chirp, frequency and phase of the whole molecule. Assuming the Hermite–Gaussian ansatz to represent the temporal profile of the molecule, we derive a set of six differential equations for the evolution of the collective variables in the limit of the bare or variational approximation. Then we perform numerical experiments to confirm the ability of the proposed approach for two-soliton molecule propagating along a Dispersion-managed fiber for anomalous, zero or normal averaged dispersion.


Author(s):  
F. Beaudoin ◽  
P. Perdu ◽  
C. DeNardi ◽  
R. Desplats ◽  
J. Lopez ◽  
...  

Abstract Ultra-short pulse laser ablation is applied to IC backside sample preparation. It is contact-less, non-thermal, precise and can ablate the various types of material present in IC packages. This study concerns the optimization of ultra-short pulse laser ablation for silicon thinning. Uncontrolled silicon roughness and poor uniformity of the laser thinned cavity needed to be tackled. Special care is taken to minimize the silicon RMS roughness to less than 1µm. Application to sample preparation of 256Mbit devices is presented.


2020 ◽  
Vol 110 (11-12) ◽  
pp. 787-789
Author(s):  
Marcel Simons ◽  
Till Rusche ◽  
Tobias Valentino ◽  
Tim Radel ◽  
Frank Vollertsen

Die Ultrakurzpuls (UKP)-laserbasierte Bearbeitung erlaubt die Herstellung von Netzstrukturen mit verschiedenen Transmissionsgraden. Vorteile der UKP-laserbasierten Herstellung der Netze liegen vor allem in der hohen Präzision und Bearbeitungsgeschwindigkeit. Die UKP-Laserbearbeitung ermöglicht die Herstellung von Netzen aus Aluminium in hoher Qualität, bezogen auf die Stegbreitenabweichung von < 8 µm, mit variablen Transmissionsgraden. Ultra-short pulse (USP) laser based processing enables the production of mesh structures with different degrees of transmission. The advantages of USP-based production of mesh structures are mainly the high precision and processing speed. USP laser processing enables the production of meshes of aluminum in high quality, with respect to the mesh width deviation of < 8 µm with variable transmission degrees.


Crystals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 19
Author(s):  
Sergei N. Smetanin ◽  
Michal Jelínek ◽  
Dmitry P. Tereshchenko ◽  
Mikhail N. Ershkov ◽  
Václav Kubeček

We propose and study the conditions of zero-dispersion phase matching for parametric Raman interactions in birefringent crystals differing by anisotropy of zero-dispersion wavelength and allowing for the spectral tuning of the zero-dispersion phase-matching condition. We choose a highly birefringent crystal of calcite having a wide zero-dispersion anisotropy range for the demonstration of new effects of laser pulse shortening in parametric Raman lasers with spectrally tunable zero-dispersion phase matching. We demonstrate the anti-Stokes (1168 nm) and multi-Stokes (1629 nm) picosecond pulse shortening and self-separation of single 80-ps ultra-short pulse from the zero-dispersion phase-matched parametric Raman lasers that are based on the calcite crystal without using any electro-optical device.


1994 ◽  
Author(s):  
Ronnie Shepherd ◽  
Rex Booth ◽  
Dwight Price ◽  
Rosemary Walling ◽  
Richard More ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document