On the transition of transient growth mechanism in Taylor–Dean flow

2021 ◽  
pp. 2150185
Author(s):  
Cheng Chen ◽  
Liu Zhang ◽  
Wei Zhang

We investigate optimal perturbation and its transient growth characteristics in Taylor–Dean flow theoretically. The parameter [Formula: see text], accounting for the ratio of average pumping velocity induced by azimuthal pressure gradient to rotating velocity by rotating cylinders, is varied from −5 to 5. The results show that for the rigid rotation case, the energy growth of optimal perturbation is increased with increasing magnitude of azimuthal pressure gradient. Further, both the main and secondary peak of the amplitude of azimuthal velocity are seen to be shifted towards the outer cylinder for wide gap case, and both are shifted oppositely towards the inner cylinder for narrow gap case. Viewing the time evolution of the energies in the three velocity components for wide gap case, anti-lift-up mechanism replaces lift-up mechanism as the dominant mechanism for energy growth, when [Formula: see text] changes from −5 to 5. While for narrow gap case, lift-up mechanism is always responsible for transient growth of axisymmetric perturbation, no matter how strong azimuthal pressure gradient is considered.

Author(s):  
Basant K. Jha ◽  
Dauda Gambo

Abstract Background Navier-Stokes and continuity equations are utilized to simulate fully developed laminar Dean flow with an oscillating time-dependent pressure gradient. These equations are solved analytically with the appropriate boundary and initial conditions in terms of Laplace domain and inverted to time domain using a numerical inversion technique known as Riemann-Sum Approximation (RSA). The flow is assumed to be triggered by the applied circumferential pressure gradient (azimuthal pressure gradient) and the oscillating time-dependent pressure gradient. The influence of the various flow parameters on the flow formation are depicted graphically. Comparisons with previously established result has been made as a limit case when the frequency of the oscillation is taken as 0 (ω = 0). Results It was revealed that maintaining the frequency of oscillation, the velocity and skin frictions can be made increasing functions of time. An increasing frequency of the oscillating time-dependent pressure gradient and relatively a small amount of time is desirable for a decreasing velocity and skin frictions. The fluid vorticity decreases with further distance towards the outer cylinder as time passes. Conclusion Findings confirm that increasing the frequency of oscillation weakens the fluid velocity and the drag on both walls of the cylinders.


2017 ◽  
Vol 831 ◽  
pp. 330-357 ◽  
Author(s):  
A. Froitzheim ◽  
S. Merbold ◽  
C. Egbers

Fully turbulent Taylor–Couette flow between independently rotating cylinders is investigated experimentally in a wide-gap configuration ($\unicode[STIX]{x1D702}=0.5$) around the maximum transport of angular momentum. In that regime turbulent Taylor vortices are present inside the gap, leading to a pronounced axial dependence of the flow. To account for this dependence, we measure the radial and azimuthal velocity components in horizontal planes at different cylinder heights using particle image velocimetry. The ratio of angular velocities of the cylinder walls $\unicode[STIX]{x1D707}$, where the torque maximum appears, is located in the low counter-rotating regime ($\unicode[STIX]{x1D707}_{max}(\unicode[STIX]{x1D702}=0.5)=-0.2$). This point coincides with the smallest radial gradient of angular velocity in the bulk and the detachment of the neutral surface from the outer cylinder wall, where the azimuthal velocity component vanishes. The structure of the flow is further revealed by decomposing the flow field into its large-scale and turbulent contributions. Applying this decomposition to the kinetic energy, we can analyse the formation process of the turbulent Taylor vortices in more detail. Starting at pure inner cylinder rotation, the vortices are formed and strengthened until $\unicode[STIX]{x1D707}=-0.2$ quite continuously, while they break down rapidly for higher counter-rotation. The same picture is shown by the decomposed Nusselt number, and the range of rotation ratios, where turbulent Taylor vortices can exist, shrinks strongly in comparison to investigations at much lower shear Reynolds numbers. Moreover, we analyse the scaling of the Nusselt number and the wind Reynolds number with the shear Reynolds number, finding a communal transition at approximately $Re_{S}\approx 10^{5}$ from classical to ultimate turbulence with a transitional regime lasting at least up to $Re_{S}\geqslant 2\times 10^{5}$. Including the axial dispersion of the flow into the calculation of the wind amplitude, we can also investigate the wind Reynolds number as a function of the rotation ratio $\unicode[STIX]{x1D707}$, finding a maximum in the low counter-rotating regime slightly larger than $\unicode[STIX]{x1D707}_{max}$. Based on our study it becomes clear that the investigation of counter-rotating Taylor–Couette flows strongly requires an axial exploration of the flow.


2013 ◽  
Vol 681 ◽  
pp. 72-78
Author(s):  
Cheng Chen ◽  
Ya Yong Shi

The effect of non-normality of the Navier-Stokes operator on the dynamics of an axisymmetric swirling flow, namely, the Oseen vortex, has been investigated. The eigenvalue analysis and transient growth analysis have been employed in order to obtain the least stable eigenmode and the global optimal perturbation, which are both considered as the initial perturbation. Three stages of dynamic process have been put into evidence for the evolution of the optimal perturbation. The early (linear) stage is characterized by the amplification of radial perturbation, consistent with the prediction of transient growth theory. Having come into the nonlinear stage, the perturbation energy growth is suppressed by the interaction between the vortex ring and the Oseen vortex core. Finally, the phenomena of secondary energy growth are also observed. Compared with the results obtained by applying the least stable eigenmode as the initial disturbance, the nonlinear behavior of the optimal perturbation features radial fluid motion and the rapid production of small eddies, which are both thought to be beneficial to fluid entrainment or mixing. The effect of perturbation amplitude on the nonlinear evolution of flows is also studied.


Author(s):  
Cheng Chen ◽  
Cheng-Jun He ◽  
Li-Hua Gao

This work is devoted to the studies of optimal perturbation and its transient growth characteristics in Spiral Poiseuille flow (SPF). The Poiseuille number [Formula: see text], representing the dimensionless axial pressure gradient, is varied from 0 to 20,000. The results show that for the axisymmetric case, with the increase of axial shear, the peaks of the amplitudes of azimuthal and radial velocities are both shifted towards the inner cylinder, and a second peak appears near the outer cylinder for both velocity components. Viewing the time evolution of azimuthal shear contribution [Formula: see text] and axial shear contribution [Formula: see text] to the kinetic energy growth of the optimal perturbation, while [Formula: see text] is large enough ([Formula: see text], 20,000), the Reynolds stress mechanism in the meridional plane [Formula: see text] is dominant for the transient growth behavior in SPF relative to anti-lift-up mechanism, which is dominant in the absence of axial flow for co-rotating Taylor–Couette flow with wide gap. For the oblique mode with azimuthal wave number [Formula: see text], which becomes the optimal azimuthal mode over a wide range of azimuthal wave number ([Formula: see text]–10) when [Formula: see text] is large enough, the peaks of the amplitudes of azimuthal and radial velocities are both shifted towards the outer cylinder, opposite to the axisymmetric case.


2015 ◽  
Vol 774 ◽  
pp. 342-362 ◽  
Author(s):  
Freja Nordsiek ◽  
Sander G. Huisman ◽  
Roeland C. A. van der Veen ◽  
Chao Sun ◽  
Detlef Lohse ◽  
...  

We present azimuthal velocity profiles measured in a Taylor–Couette apparatus, which has been used as a model of stellar and planetary accretion disks. The apparatus has a cylinder radius ratio of ${\it\eta}=0.716$, an aspect ratio of ${\it\Gamma}=11.74$, and the plates closing the cylinders in the axial direction are attached to the outer cylinder. We investigate angular momentum transport and Ekman pumping in the Rayleigh-stable regime. This regime is linearly stable and is characterized by radially increasing specific angular momentum. We present several Rayleigh-stable profiles for shear Reynolds numbers $\mathit{Re}_{S}\sim O(10^{5})$, for both ${\it\Omega}_{i}>{\it\Omega}_{o}>0$ (quasi-Keplerian regime) and ${\it\Omega}_{o}>{\it\Omega}_{i}>0$ (sub-rotating regime), where ${\it\Omega}_{i,o}$ is the inner/outer cylinder rotation rate. None of the velocity profiles match the non-vortical laminar Taylor–Couette profile. The deviation from that profile increases as solid-body rotation is approached at fixed $\mathit{Re}_{S}$. Flow super-rotation, an angular velocity greater than those of both cylinders, is observed in the sub-rotating regime. The velocity profiles give lower bounds for the torques required to rotate the inner cylinder that are larger than the torques for the case of laminar Taylor–Couette flow. The quasi-Keplerian profiles are composed of a well-mixed inner region, having approximately constant angular momentum, connected to an outer region in solid-body rotation with the outer cylinder and attached axial boundaries. These regions suggest that the angular momentum is transported axially to the axial boundaries. Therefore, Taylor–Couette flow with closing plates attached to the outer cylinder is an imperfect model for accretion disk flows, especially with regard to their stability.


2019 ◽  
Vol 878 ◽  
pp. 190-220 ◽  
Author(s):  
Francesca M. Sogaro ◽  
Peter J. Schmid ◽  
Aimee S. Morgans

This study analyses the interplay between classical acoustic modes and intrinsic thermoacoustic (ITA) modes in a simple thermoacoustic system. The analysis is performed using a frequency-domain low-order network model as well as a time-domain spatially discretised model. Anti-correlated modal sensitivities are found to arise due to a pairwise interplay between acoustic and ITA modes. The magnitude of the sensitivities increases as the interplay between the modes grows stronger. The results show a global behaviour of the modes linked to the presence of exceptional points in the spectrum. The time-domain analysis results in a delay-differential equation and allows the investigation of non-normal behaviour and its consequences. Pseudospectral analysis reveals that energy amplification is crucially linked to an interplay between acoustic and ITA modes. While higher non-orthogonality between two modes is correlated with peaks in modal sensitivity, transient energy growth does not necessarily involve the most sensitive modes. In particular, growth estimates based on the Kreiss constant demonstrate that transient amplification relies critically on the proximity of the non-normal modes to the imaginary axis. The time scale for transient amplification is identified as the flame time delay, which is further corroborated by determining the optimal initial conditions responsible for the bulk of the non-modal energy growth. The flame is identified as an active and dominant contributor to energy gain. The frequency of the optimal perturbation matches the acoustic time scale, once more confirming an interplay between acoustic and ITA structures. Flame-based amplification factors of two to five are found, which are significant when feeding into the acoustic dynamics and eventually triggering nonlinear limit-cycle behaviour.


2019 ◽  
Vol 286 ◽  
pp. 07008
Author(s):  
J. Benyza ◽  
M. Lamine ◽  
A. Hifdi

The effect of a uniform cross flow (injection/ suction) on the transient energy growth of a plane Poiseuille flow is investigated. Non-modal linear stability analysis is carried out to determine the two-dimensional optimal perturbations for maximum growth. The linearized Navier-Stockes equations are reduced to a modified Orr Sommerfeld equation that is solved numerically using a Chebychev collocation spectral method. Our study is focused on the response to external excitations and initial conditions by examining the energy growth function G(t) and the pseudo-spectrum. Results show that, the transient energy of the optimal perturbation grows rapidly at short times and decline slowly at long times when the cross-flow rate is low or strong. In addition, the maximum energy growth is very pronounced in low injection rate than that of the strong one. For the intermediate cross-flow rate, the transient energy growth of the perturbation, is only possible at the long times with a very high-energy gain. Analysis of the pseudo-spectrum show that the non-normal character of the modified Orr-Sommerfeld operator tends to a high sensitivity of pseudo-spectra structures.


1964 ◽  
Vol 20 (1) ◽  
pp. 35-46 ◽  
Author(s):  
E. M. Sparrow ◽  
W. D. Munro ◽  
V. K. Jonsson

An analytical investigation is carried out to determine the conditions for instability in a viscous fluid contained between rotating coaxial cylinders of arbitrary radius ratio. A solution method is outlined and then applied to cylinders having radius ratios ranging from 0·95 to 0·1. Consideration is given to both cases wherein the cylinders are rotating in the same direction and in opposite directions. Results are reported for the Taylor numbers and wave-numbers which mark the onset of instability. The present results are also employed to delineate the range of applicability of the closed-form instability predictions of Taylor and of Meksyn, which were derived for narrow-gap conditions.


2014 ◽  
Vol 758 ◽  
Author(s):  
A. K. Kaminski ◽  
C. P. Caulfield ◽  
J. R. Taylor

AbstractWe investigate numerically transient linear growth of three-dimensional perturbations in a stratified shear layer to determine which perturbations optimize the growth of the total kinetic and potential energy over a range of finite target time intervals. The stratified shear layer has an initial parallel hyperbolic tangent velocity distribution with Reynolds number $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathit{Re}=U_0 h/\nu =1000$ and Prandtl number $\nu /\kappa =1$, where $\nu $ is the kinematic viscosity of the fluid and $\kappa $ is the diffusivity of the density. The initial stable buoyancy distribution has constant buoyancy frequency $N_0$, and we consider a range of flows with different bulk Richardson number ${\mathit{Ri}}_b=N_0^2h^2/U_0^2$, which also corresponds to the minimum gradient Richardson number ${\mathit{Ri}}_g(z)=N_0^2/(\mathrm{d}U/\mathrm{d} z)^2$ at the midpoint of the shear layer. For short target times, the optimal perturbations are inherently three-dimensional, while for sufficiently long target times and small ${\mathit{Ri}}_b$ the optimal perturbations are closely related to the normal-mode ‘Kelvin–Helmholtz’ (KH) instability, consistent with analogous calculations in an unstratified mixing layer recently reported by Arratia et al. (J. Fluid Mech., vol. 717, 2013, pp. 90–133). However, we demonstrate that non-trivial transient growth occurs even when the Richardson number is sufficiently high to stabilize all normal-mode instabilities, with the optimal perturbation exciting internal waves at some distance from the midpoint of the shear layer.


Sign in / Sign up

Export Citation Format

Share Document