scholarly journals Effect of an oscillating time-dependent pressure gradient on Dean flow: transient solution

Author(s):  
Basant K. Jha ◽  
Dauda Gambo

Abstract Background Navier-Stokes and continuity equations are utilized to simulate fully developed laminar Dean flow with an oscillating time-dependent pressure gradient. These equations are solved analytically with the appropriate boundary and initial conditions in terms of Laplace domain and inverted to time domain using a numerical inversion technique known as Riemann-Sum Approximation (RSA). The flow is assumed to be triggered by the applied circumferential pressure gradient (azimuthal pressure gradient) and the oscillating time-dependent pressure gradient. The influence of the various flow parameters on the flow formation are depicted graphically. Comparisons with previously established result has been made as a limit case when the frequency of the oscillation is taken as 0 (ω = 0). Results It was revealed that maintaining the frequency of oscillation, the velocity and skin frictions can be made increasing functions of time. An increasing frequency of the oscillating time-dependent pressure gradient and relatively a small amount of time is desirable for a decreasing velocity and skin frictions. The fluid vorticity decreases with further distance towards the outer cylinder as time passes. Conclusion Findings confirm that increasing the frequency of oscillation weakens the fluid velocity and the drag on both walls of the cylinders.

2021 ◽  
Vol 29 (1) ◽  
Author(s):  
Basant K. Jha ◽  
Dauda Gambo

AbstractHydrodynamic behaviour of slip flow and radially applied exponential time-dependent pressure gradient in a curvilinear concentric cylinder is examined. A two-step method of solution has been utilized in resolving the governing momentum equation. Accordingly, the exact solution of the time-dependent partial differential equation is derived in terms of the Laplace parameter. Afterwards, the Laplace domain solution is then inverted to time domain using a numerical-based inverting scheme known as Riemann-sum approximation. The effect of various dimensionless parameters involved in the problem on the Dean velocity, shear stresses and Dean vortices is discussed with the aid of graphs. It is found that maximum Dean velocity is due to an exponentially growing time-dependent pressure gradient and slip wall coefficient. Stability of the Dean vortices is achieved by suppressing time, wall slippage and inducing an exponentially decaying time-dependent pressure gradient.


2021 ◽  
pp. 2150185
Author(s):  
Cheng Chen ◽  
Liu Zhang ◽  
Wei Zhang

We investigate optimal perturbation and its transient growth characteristics in Taylor–Dean flow theoretically. The parameter [Formula: see text], accounting for the ratio of average pumping velocity induced by azimuthal pressure gradient to rotating velocity by rotating cylinders, is varied from −5 to 5. The results show that for the rigid rotation case, the energy growth of optimal perturbation is increased with increasing magnitude of azimuthal pressure gradient. Further, both the main and secondary peak of the amplitude of azimuthal velocity are seen to be shifted towards the outer cylinder for wide gap case, and both are shifted oppositely towards the inner cylinder for narrow gap case. Viewing the time evolution of the energies in the three velocity components for wide gap case, anti-lift-up mechanism replaces lift-up mechanism as the dominant mechanism for energy growth, when [Formula: see text] changes from −5 to 5. While for narrow gap case, lift-up mechanism is always responsible for transient growth of axisymmetric perturbation, no matter how strong azimuthal pressure gradient is considered.


2009 ◽  
Vol 8 (2) ◽  
pp. 92 ◽  
Author(s):  
A. A. Mendiburu ◽  
L. R. Carrocci ◽  
J. A. Carvalho

This paperaims to determine the velocity profile, in transient state, for a parallel incompressible flow known as Couette flow. The Navier-Stokes equations were applied upon this flow. Analytical solutions, based in Fourier series and integral transforms, were obtained for the one-dimensional transient Couette flow, taking into account constant and time-dependent pressure gradients acting on the fluid since the same instant when the plate starts it´s movement. Taking advantage of the orthogonality and superposition properties solutions were foundfor both considered cases. Considering a time-dependent pressure gradient, it was found a general solution for the Couette flow for a particular time function. It was found that the solution for a time-dependent pressure gradient includes the solutions for a zero pressure gradient and for a constant pressure gradient.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Irena Lasiecka ◽  
Buddhika Priyasad ◽  
Roberto Triggiani

Abstract We consider the 𝑑-dimensional Boussinesq system defined on a sufficiently smooth bounded domain and subject to a pair { v , u } \{v,\boldsymbol{u}\} of controls localized on { Γ ~ , ω } \{\widetilde{\Gamma},\omega\} . Here, 𝑣 is a scalar Dirichlet boundary control for the thermal equation, acting on an arbitrarily small connected portion Γ ~ \widetilde{\Gamma} of the boundary Γ = ∂ ⁡ Ω \Gamma=\partial\Omega . Instead, 𝒖 is a 𝑑-dimensional internal control for the fluid equation acting on an arbitrarily small collar 𝜔 supported by Γ ~ \widetilde{\Gamma} . The initial conditions for both fluid and heat equations are taken of low regularity. We then seek to uniformly stabilize such Boussinesq system in the vicinity of an unstable equilibrium pair, in the critical setting of correspondingly low regularity spaces, by means of an explicitly constructed, finite-dimensional feedback control pair { v , u } \{v,\boldsymbol{u}\} localized on { Γ ~ , ω } \{\widetilde{\Gamma},\omega\} . In addition, they will be minimal in number and of reduced dimension; more precisely, 𝒖 will be of dimension ( d - 1 ) (d-1) , to include necessarily its 𝑑-th component, and 𝑣 will be of dimension 1. The resulting space of well-posedness and stabilization is a suitable, tight Besov space for the fluid velocity component (close to L 3 ⁢ ( Ω ) \boldsymbol{L}^{3}(\Omega) for d = 3 d=3 ) and a corresponding Besov space for the thermal component, q > d q>d . Unique continuation inverse theorems for suitably over-determined adjoint static problems play a critical role in the constructive solution. Their proof rests on Carleman-type estimates, a topic pioneered by M. V. Klibanov since the early 80s.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1860
Author(s):  
Eugene Talygin ◽  
Alexander Gorodkov

Previously, it has been shown that the dynamic geometric configuration of the flow channel of the left heart and aorta corresponds to the direction of the streamlines of swirling flow, which can be described using the exact solution of the Navier–Stokes and continuity equations for the class of centripetal swirling viscous fluid flows. In this paper, analytical expressions were obtained. They describe the functions C0t and Г0t, included in the solutions, for the velocity components of such a flow. These expressions make it possible to relate the values of these functions to dynamic changes in the geometry of the flow channel in which the swirling flow evolves. The obtained expressions allow the reconstruction of the dynamic velocity field of an unsteady potential swirling flow in a flow channel of arbitrary geometry. The proposed approach can be used as a theoretical method for correct numerical modeling of the blood flow in the heart chambers and large arteries, as well as for developing a mathematical model of blood circulation, considering the swirling structure of the blood flow.


Sign in / Sign up

Export Citation Format

Share Document