Robust Face Detection and Tracking for Real-Life Applications

Author(s):  
Hyeran Byun ◽  
Byoungchul Ko

In this paper, we propose a new face detection and tracking algorithm for real-life telecommunication applications, such as video conferencing, cellular phone and PDA. We combine template-based face detection and tracking method with color information to track a face regardless of various lighting conditions and complex backgrounds as well as the race. Based on our experiments, we generate robust face templates from wavelet-transformed lowpass and two highpass subimages at the second level low-resolution. However, since template matching is generally sensitive to the change of illumination conditions, we propose a new type of preprocessing method. Tracking method is applied to reduce the computation time and predict precise face candidate region even though the movement is not uniform. Facial components are also detected using k-means clustering and their geometrical properties. Finally, from the relative distance of two eyes, we verify the real face and estimate the size of facial ellipse. To validate face detection and tracking performance of our algorithm, we test our method using six different video categories of QCIF size which are recorded in dynamic environments.

Author(s):  
Deng-Yuan Huang ◽  
Chao-Ho Chen ◽  
Tsong-Yi Chen ◽  
Wu-Chih Hu ◽  
Zhi-Bin Guo ◽  
...  

Author(s):  
NAGAPRIYA KAMATH K ◽  
ASHWINI HOLLA ◽  
SUBRAMANYA BHAT

Face detection is a image processing technology that determines the location and size of human faces in digital images or video. This module precedes face recognition systems that plays an important role in applications such as video surveillance, human computer interaction and so on. This proposed work focuses mainly on multiple face detection technique, taking into account the variations in digital images or video such as face pose, appearances and illumination. The work is based on skin color model in YCbCr and HSV color space. First stage of this proposed method is to develop a skin color model and then applying the skin color segmentation in order to specify all skin regions in an image. Secondly, a template matching is done to assure that the segmented image does not contain any non-facial part. This algorithm works to be robust and efficient.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4034
Author(s):  
Arie Haenel ◽  
Yoram Haddad ◽  
Maryline Laurent ◽  
Zonghua Zhang

The Internet of Things world is in need of practical solutions for its security. Existing security mechanisms for IoT are mostly not implemented due to complexity, budget, and energy-saving issues. This is especially true for IoT devices that are battery powered, and they should be cost effective to be deployed extensively in the field. In this work, we propose a new cross-layer approach combining existing authentication protocols and existing Physical Layer Radio Frequency Fingerprinting technologies to provide hybrid authentication mechanisms that are practically proved efficient in the field. Even though several Radio Frequency Fingerprinting methods have been proposed so far, as a support for multi-factor authentication or even on their own, practical solutions are still a challenge. The accuracy results achieved with even the best systems using expensive equipment are still not sufficient on real-life systems. Our approach proposes a hybrid protocol that can save energy and computation time on the IoT devices side, proportionally to the accuracy of the Radio Frequency Fingerprinting used, which has a measurable benefit while keeping an acceptable security level. We implemented a full system operating in real time and achieved an accuracy of 99.8% for the additional cost of energy, leading to a decrease of only ~20% in battery life.


2021 ◽  
Vol 18 (2) ◽  
pp. 172988142110087
Author(s):  
Qiao Huang ◽  
Jinlong Liu

The vision-based road lane detection technique plays a key role in driver assistance system. While existing lane recognition algorithms demonstrated over 90% detection rate, the validation test was usually conducted on limited scenarios. Significant gaps still exist when applied in real-life autonomous driving. The goal of this article was to identify these gaps and to suggest research directions that can bridge them. The straight lane detection algorithm based on linear Hough transform (HT) was used in this study as an example to evaluate the possible perception issues under challenging scenarios, including various road types, different weather conditions and shades, changed lighting conditions, and so on. The study found that the HT-based algorithm presented an acceptable detection rate in simple backgrounds, such as driving on a highway or conditions showing distinguishable contrast between lane boundaries and their surroundings. However, it failed to recognize road dividing lines under varied lighting conditions. The failure was attributed to the binarization process failing to extract lane features before detections. In addition, the existing HT-based algorithm would be interfered by lane-like interferences, such as guardrails, railways, bikeways, utility poles, pedestrian sidewalks, buildings and so on. Overall, all these findings support the need for further improvements of current road lane detection algorithms to be robust against interference and illumination variations. Moreover, the widely used algorithm has the potential to raise the lane boundary detection rate if an appropriate search range restriction and illumination classification process is added.


2012 ◽  
Author(s):  
Zhi Li ◽  
Xinzhu Sang ◽  
Binbin Yan ◽  
Junmin Leng

Sign in / Sign up

Export Citation Format

Share Document