scholarly journals Practical Cross-Layer Radio Frequency-Based Authentication Scheme for Internet of Things

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4034
Author(s):  
Arie Haenel ◽  
Yoram Haddad ◽  
Maryline Laurent ◽  
Zonghua Zhang

The Internet of Things world is in need of practical solutions for its security. Existing security mechanisms for IoT are mostly not implemented due to complexity, budget, and energy-saving issues. This is especially true for IoT devices that are battery powered, and they should be cost effective to be deployed extensively in the field. In this work, we propose a new cross-layer approach combining existing authentication protocols and existing Physical Layer Radio Frequency Fingerprinting technologies to provide hybrid authentication mechanisms that are practically proved efficient in the field. Even though several Radio Frequency Fingerprinting methods have been proposed so far, as a support for multi-factor authentication or even on their own, practical solutions are still a challenge. The accuracy results achieved with even the best systems using expensive equipment are still not sufficient on real-life systems. Our approach proposes a hybrid protocol that can save energy and computation time on the IoT devices side, proportionally to the accuracy of the Radio Frequency Fingerprinting used, which has a measurable benefit while keeping an acceptable security level. We implemented a full system operating in real time and achieved an accuracy of 99.8% for the additional cost of energy, leading to a decrease of only ~20% in battery life.

2021 ◽  
Vol 17 (7) ◽  
pp. 155014772110353
Author(s):  
Mohammad Babar ◽  
Muhammad Sohail Khan

Edge computing brings down storage, computation, and communication services from the cloud server to the network edge, resulting in low latency and high availability. The Internet of things (IoT) devices are resource-constrained, unable to process compute-intensive tasks. The convergence of edge computing and IoT with computation offloading offers a feasible solution in terms of performance. Besides these, computation offload saves energy, reduces computation time, and extends the battery life of resource constrain IoT devices. However, edge computing faces the scalability problem, when IoT devices in large numbers approach edge for computation offloading requests. This research article presents a three-tier energy-efficient framework to address the scalability issue in edge computing. We introduced an energy-efficient recursive clustering technique at the IoT layer that prioritizes the tasks based on weight. Each selected task with the highest weight value offloads to the edge server for execution. A lightweight client–server architecture affirms to reduce the computation offloading overhead. The proposed energy-efficient framework for IoT algorithm makes efficient computation offload decisions while considering energy and latency constraints. The energy-efficient framework minimizes the energy consumption of IoT devices, decreases computation time and computation overhead, and scales the edge server. Numerical results show that the proposed framework satisfies the quality of service requirements of both delay-sensitive and delay-tolerant applications by minimizing energy and increasing the lifetime of devices.


Author(s):  
Bharathi N. Gopalsamy

The central hypothesis of Internet of Things is the term “connectivity”. The IoT devices are connected to the Internet through a wide variety of communication technologies. This chapter explains the various technologies involved in IoT connectivity. The diversity in communication raises the query of which one to choose for the proposed application. The key objective of the application needs to be defined very clearly. The application features such as the power requirement, data size, storage, security and battery life highly influence the decision of selecting one or more communication technology. Near Field Communication is a good choice for short-range communication, whereas Wi-Fi can be opted for a larger range of coverage. Though Bluetooth is required for higher data rate, it is power hungry, but ZigBee is suitable for low power devices. There involves always the tradeoff between the technologies and the requirements. This chapter emphasizes that the goal of the application required to be more precise to decide the winner of the IoT connectivity technology that suits for it.


2021 ◽  
pp. 3884-3896
Author(s):  
Mohammed Hassan Majhool, Haider Th. Salim Alrikabi, Mansour S. Farhan

Internet of Things (IOT) devices and monitoring systems are essential for the accurate, reliable, and proper functioning of photovoltaic (PV) solar energy systems. The data acquisition and monitoring system ensure adequate operation and ascertain system malfunctions before they become significant problems. The IOT integrates ordinary items using modern technology in the physical scope. It is all feasible to utility voltage, current, temperature, and humidity sensors. The current research focuses on developing a cost-effective, accessible, and steadfast data monitoring system. A microcontroller-based data logger is stored in a cloud. The data can be downloaded directly from the website using the IoT technique because photovoltaic (PV) panels are built-in faraway locations and humans cannot reach them. The suggested system demonstrates the online utilization of solar PV power.


2020 ◽  
Vol 75 (11-12) ◽  
pp. 711-727
Author(s):  
Christophe Moy ◽  
Lilian Besson ◽  
Guillaume Delbarre ◽  
Laurent Toutain

AbstractThis paper describes the theoretical principles and experimental results of reinforcement learning algorithms embedded into IoT devices (Internet of Things), in order to tackle the problem of radio collision mitigation in ISM unlicensed bands. Multi-armed bandit (MAB) learning algorithms are used here to improve both the IoT network capability to support the expected massive number of objects and the energetic autonomy of the IoT devices. We first illustrate the efficiency of the proposed approach in a proof-of-concept, based on USRP software radio platforms operating on real radio signals. It shows how collisions with other RF signals are diminished for IoT devices that use MAB learning. Then we describe the first implementation of such algorithms on LoRa devices operating in a real LoRaWAN network at 868 MHz. We named this solution IoTligent. IoTligent does not add neither processing overhead, so it can be run into the IoT devices, nor network overhead, so that it requires no change to LoRaWAN protocol. Real-life experiments done in a real LoRa network show that IoTligent devices’ battery life can be extended by a factor of 2, in the scenarios we faced during our experiment. Finally we submit IoTligent devices to very constrained conditions that are expected in the future with the growing number of IoT devices, by generating an artificial IoT massive radio traffic in anechoic chamber. We show that IoTligent devices can cope with spectrum scarcity that will occur at that time in unlicensed bands.


2013 ◽  
Vol 347-350 ◽  
pp. 3322-3325
Author(s):  
Xiao Jing Li ◽  
Yan Hui Hu

The concept of Internet of Things (IoT) is opening new horizons in systems intelligence, where physical objects (embedded with sensory, identification and networking capabilities) can interact with other objects through the global infrastructure of wireless/wired Internet. These systems can be monitored and controlled by filtering and processing collected data. Such intelligent design will naturally result in efficient and cost effective systems. The concept of IOT and the architecture of IOT are discussed. The key technologies of IOT, including Radio Frequency Identification technology, Electronic Product Code technology are analyzed. The framework of digital agriculture application based on IOT is proposed.


2021 ◽  
Vol 13 (8) ◽  
pp. 210 ◽  
Author(s):  
Sheetal Ghorpade ◽  
Marco Zennaro ◽  
Bharat Chaudhari

With exponential growth in the deployment of Internet of Things (IoT) devices, many new innovative and real-life applications are being developed. IoT supports such applications with the help of resource-constrained fixed as well as mobile nodes. These nodes can be placed in anything from vehicles to the human body to smart homes to smart factories. Mobility of the nodes enhances the network coverage and connectivity. One of the crucial requirements in IoT systems is the accurate and fast localization of its nodes with high energy efficiency and low cost. The localization process has several challenges. These challenges keep changing depending on the location and movement of nodes such as outdoor, indoor, with or without obstacles and so on. The performance of localization techniques greatly depends on the scenarios and conditions from which the nodes are traversing. Precise localization of nodes is very much required in many unique applications. Although several localization techniques and algorithms are available, there are still many challenges for the precise and efficient localization of the nodes. This paper classifies and discusses various state-of-the-art techniques proposed for IoT node localization in detail. It includes the different approaches such as centralized, distributed, iterative, ranged based, range free, device-based, device-free and their subtypes. Furthermore, the different performance metrics that can be used for localization, comparison of the different techniques, some prominent applications in smart cities and future directions are also covered.


2020 ◽  
Vol 8 (6) ◽  
pp. 3387-3392

IoT has become one of the most prominent used industry which is been intensively used in various applications across the globe. This usage has also made it more vulnerable to numerous attacks from within and outside the industry. Though this remains as one of the most predominant challenges in almost all of the industries, most of the organizations fail to allocate security budgets in order to secure their sub-networks from being misused and attacked. One of the most important aspects of this drawback is the unawareness of various upcoming IoT devices and infrastructures that are not technically sound enough to handle and meet the challenges caused by the various attacking methods. Implementation of highly secure IoT based infrastructure could basically produce various other benefits that include obtaining greater revenues from new inculcated methods and models while minimizing the operational costs by making use of the various optimized processes. This, in turn, leads to various meaningful and accurate data with a better knowledge of user experience. In order to develop such an IoT infrastructure, all the organizations have to mandatory build built-in security checks in each and every level of the applications being used by them. The paper presents a new design model that is used for securing all the devices from various malicious attacks. The paper also compares the newly designed model with the existing model and has proved the betterment of the security level that is been achieved.


2015 ◽  
Vol 66 (1) ◽  
pp. 47-52 ◽  
Author(s):  
Algimantas Venčkauskas ◽  
Nerijus Jusas ◽  
Egidijus Kazanavičius ◽  
Vytautas Štuikys

Abstract The Internet of Things (IoT) is a technological revolution that represents the future of computing and communications. One of the most important challenges of IoT is security: protection of data and privacy. The SSL protocol is the de-facto standard for secure Internet communications. The extra energy cost of encrypting and authenticating of the application data with SSL is around 15%. For IoT devices, where energy resources are limited, the increase in the cost of energy is a very significant factor. In this paper we present the energy efficient SSL protocol which ensures the maximum bandwidth and the required level of security with minimum energy consumption. The proper selection of the security level and CPU multiplier, can save up to 85% of the energy required for data encryption.


2021 ◽  
Vol 11 (7) ◽  
pp. 3260
Author(s):  
Aarón Echeverría ◽  
Cristhian Cevallos ◽  
Ivan Ortiz-Garces ◽  
Roberto O. Andrade

The inclusion of Internet of Things (IoT) for building smart cities, smart health, smart grids, and other smart concepts has driven data-driven decision making by managers and automation in each domain. However, the hyper-connectivity generated by IoT networks coupled with limited default security in IoT devices increases security risks that can jeopardize the operations of cities, hospitals, and organizations. Strengthening the security aspects of IoT devices prior to their use in different systems can contribute to minimize the attack surface. This study aimed to model a sequence of seven steps to minimize the attack surface by executing hardening processes. Conducted a systematic literature review using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) techniques. In this way, we were able to define a proposed methodology to evaluate the security level of an IoT solution by means of a checklist that considers the security aspects in the three layers of the IoT architecture. A risk matrix adapted to IoT is established to evaluate the attack surface. Finally, a process of hardening and vulnerability analysis is proposed to reduce the attack surface and improve the security level of the IoT solution.


Author(s):  
Tanishka and Prof. Shikha Gupta

The internet of things, or IoT, is a system of interrelated computing devices, mechanical and digital machines, objects, animals or people that are provided with unique identifiers (UIDs) and the ability to transfer data over a network without requiring human-to-human or human-to-computer interaction. Internet of Things (IoT) is rapidly gaining momentum in the scenario of telecommunications. Conventional networks allow for interactivity and data exchange, but these networks have not been designed for the new features and functions of IoT devices. In this paper, an algorithm is proposed to share common recourse among Things, that is, between different types of smart appliances. . Purpose is to analyze deeper the cases separating the network and IoT layout, giving a deeper explanation of the purpose of the simulations, presenting all the information needed to utilize the exercises but also giving suggestion how to expand the exercises further. This implementation can be implemented effectively using package tracking software that includes IoT functions to control and simulate a smart home. IoT technology can be applied to many real life issues, such as: homework, treatment, campus, office, etc.


Sign in / Sign up

Export Citation Format

Share Document