AN INFEASIBLE ELITIST BASED PARTICLE SWARM OPTIMIZATION FOR CONSTRAINED MULTIOBJECTIVE OPTIMIZATION AND ITS CONVERGENCE

Author(s):  
JINGXUAN WEI ◽  
YUPING WANG

In this paper, an infeasible elitist based particle swarm optimization is proposed for solving constrained optimization problems. Firstly, an infeasible elitist preservation strategy is proposed, which keeps some infeasible solutions with smaller rank values at the early stage of evolution regardless of how large the constraint violations are, and keep some infeasible solutions with smaller constraint violations and rank values at the later stage of evolution. In this manner, the true Pareto front will be found easier. Secondly, in order to find a set of diversity and uniformly distributed Pareto optimal solutions, a new crowding distance function is designed. It can assign large function values not only for the particles located in the sparse regions of the objective space but also for the crowded particles located near to the boundary of the Pareto front as well. Thirdly, a new mutation operator with two phases is proposed. In the first phase, the particles whose constraint violations are less than the threshold value will be used to compute the total force, then the force will be used as a mutation direction, being helpful to find the better solutions along this direction. In order to guarantee the convergence of the algorithm, the second phase of mutation is proposed. Finally, the convergence of the algorithm is proved. The comparative study shows that the proposed algorithm can generate widespread and uniformly distributed Pareto fronts and outperforms those compared algorithms.

Information ◽  
2018 ◽  
Vol 9 (7) ◽  
pp. 173 ◽  
Author(s):  
Xiang Yu ◽  
Claudio Estevez

Multiswarm comprehensive learning particle swarm optimization (MSCLPSO) is a multiobjective metaheuristic recently proposed by the authors. MSCLPSO uses multiple swarms of particles and externally stores elitists that are nondominated solutions found so far. MSCLPSO can approximate the true Pareto front in one single run; however, it requires a large number of generations to converge, because each swarm only optimizes the associated objective and does not learn from any search experience outside the swarm. In this paper, we propose an adaptive particle velocity update strategy for MSCLPSO to improve the search efficiency. Based on whether the elitists are indifferent or complex on each dimension, each particle adaptively determines whether to just learn from some particle in the same swarm, or additionally from the difference of some pair of elitists for the velocity update on that dimension, trying to achieve a tradeoff between optimizing the associated objective and exploring diverse regions of the Pareto set. Experimental results on various two-objective and three-objective benchmark optimization problems with different dimensional complexity characteristics demonstrate that the adaptive particle velocity update strategy improves the search performance of MSCLPSO significantly and is able to help MSCLPSO locate the true Pareto front more quickly and obtain better distributed nondominated solutions over the entire Pareto front.


2018 ◽  
Vol 232 ◽  
pp. 03039
Author(s):  
Taowei Chen ◽  
Yiming Yu ◽  
Kun Zhao

Particle swarm optimization(PSO) algorithm has been widely applied in solving multi-objective optimization problems(MOPs) since it was proposed. However, PSO algorithms updated the velocity of each particle using a single search strategy, which may be difficult to obtain approximate Pareto front for complex MOPs. In this paper, inspired by the theory of P system, a multi-objective particle swarm optimization (PSO) algorithm based on the framework of membrane system(PMOPSO) is proposed to solve MOPs. According to the hierarchical structure, objects and rules of P system, the PSO approach is used in elementary membranes to execute multiple search strategy. And non-dominated sorting and crowding distance is used in skin membrane for improving speed of convergence and maintaining population diversity by evolutionary rules. Compared with other multi-objective optimization algorithm including MOPSO, dMOPSO, SMPSO, MMOPSO, MOEA/D, SPEA2, PESA2, NSGAII on a benchmark series function, the experimental results indicate that the proposed algorithm is not only feasible and effective but also have a better convergence to true Pareto front.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 922 ◽  
Author(s):  
Yuji Du ◽  
Fanfan Xu

As a meta-heuristic algoriTthm, particle swarm optimization (PSO) has the advantages of having a simple principle, few required parameters, easy realization and strong adaptability. However, it is easy to fall into a local optimum in the early stage of iteration. Aiming at this shortcoming, this paper presents a hybrid multi-step probability selection particle swarm optimization with sine chaotic inertial weight and symmetric tangent chaotic acceleration coefficients (MPSPSO-ST), which can strengthen the overall performance of PSO to a large extent. Firstly, we propose a hybrid multi-step probability selection update mechanism (MPSPSO), which skillfully uses a multi-step process and roulette wheel selection to improve the performance. In order to achieve a good balance between global search capability and local search capability to further enhance the performance of the method, we also design sine chaotic inertial weight and symmetric tangent chaotic acceleration coefficients inspired by chaos mechanism and trigonometric functions, which are integrated into the MPSPSO-ST algorithm. This strategy enables the diversity of the swarm to be preserved to discourage premature convergence. To evaluate the effectiveness of the MPSPSO-ST algorithm, we conducted extensive experiments with 20 classic benchmark functions. The experimental results show that the MPSPSO-ST algorithm has faster convergence speed, higher optimization accuracy and better robustness, which is competitive in solving numerical optimization problems and outperforms a lot of classical PSO variants and well-known optimization algorithms.


Author(s):  
Hongzhi Hu ◽  
Shulin Tian ◽  
Qing Guo ◽  
Aijia Ouyang

In attempting to overcome the limitation of current methods to solve complicated constrained optimization problems, this paper proposes an adaptive hybrid particle swarm optimization multi-objective optimization (AHPSOMO) algorithm. In the early stage, this algorithm initializes the individuals in a population in an even manner using good point set (GPS) theory so that the diversity of the population can be guaranteed. In the process of local search, differential evolution (DE) algorithm is introduced for updating local optimal individuals. Particle swarm optimization method is further adopted to conduct global search as per the multi-objective approach. The results of simulation tests on 24 classic test functions and three engineering constrained optimization problems show that compared with other algorithms, our proposed algorithm is effective and feasible, which can offer highly accurate solutions with good robustness.


2021 ◽  
Author(s):  
Moritz Mühlenthaler ◽  
Alexander Raß ◽  
Manuel Schmitt ◽  
Rolf Wanka

AbstractMeta-heuristics are powerful tools for solving optimization problems whose structural properties are unknown or cannot be exploited algorithmically. We propose such a meta-heuristic for a large class of optimization problems over discrete domains based on the particle swarm optimization (PSO) paradigm. We provide a comprehensive formal analysis of the performance of this algorithm on certain “easy” reference problems in a black-box setting, namely the sorting problem and the problem OneMax. In our analysis we use a Markov model of the proposed algorithm to obtain upper and lower bounds on its expected optimization time. Our bounds are essentially tight with respect to the Markov model. We show that for a suitable choice of algorithm parameters the expected optimization time is comparable to that of known algorithms and, furthermore, for other parameter regimes, the algorithm behaves less greedy and more explorative, which can be desirable in practice in order to escape local optima. Our analysis provides a precise insight on the tradeoff between optimization time and exploration. To obtain our results we introduce the notion of indistinguishability of states of a Markov chain and provide bounds on the solution of a recurrence equation with non-constant coefficients by integration.


Author(s):  
Malek Sarhani ◽  
Stefan Voß

AbstractBio-inspired optimization aims at adapting observed natural behavioral patterns and social phenomena towards efficiently solving complex optimization problems, and is nowadays gaining much attention. However, researchers recently highlighted an inconsistency between the need in the field and the actual trend. Indeed, while nowadays it is important to design innovative contributions, an actual trend in bio-inspired optimization is to re-iterate the existing knowledge in a different form. The aim of this paper is to fill this gap. More precisely, we start first by highlighting new examples for this problem by considering and describing the concepts of chunking and cooperative learning. Second, by considering particle swarm optimization (PSO), we present a novel bridge between these two notions adapted to the problem of feature selection. In the experiments, we investigate the practical importance of our approach while exploring both its strength and limitations. The results indicate that the approach is mainly suitable for large datasets, and that further research is needed to improve the computational efficiency of the approach and to ensure the independence of the sub-problems defined using chunking.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4613
Author(s):  
Shah Fahad ◽  
Shiyou Yang ◽  
Rehan Ali Khan ◽  
Shafiullah Khan ◽  
Shoaib Ahmed Khan

Electromagnetic design problems are generally formulated as nonlinear programming problems with multimodal objective functions and continuous variables. These can be solved by either a deterministic or a stochastic optimization algorithm. Recently, many intelligent optimization algorithms, such as particle swarm optimization (PSO), genetic algorithm (GA) and artificial bee colony (ABC), have been proposed and applied to electromagnetic design problems with promising results. However, there is no universal algorithm which can be used to solve engineering design problems. In this paper, a stochastic smart quantum particle swarm optimization (SQPSO) algorithm is introduced. In the proposed SQPSO, to tackle the premature convergence problem in order to improve the global search ability, a smart particle and a memory archive are adopted instead of mutation operations. Moreover, to enhance the exploration searching ability, a new set of random numbers and control parameters are introduced. Experimental results validate that the adopted control policy in this work can achieve a good balance between exploration and exploitation. Finally, the SQPSO has been tested on well-known optimization benchmark functions and implemented on the electromagnetic TEAM workshop problem 22. The simulation result shows an outstanding capability of the proposed algorithm in speeding convergence compared to other algorithms.


2021 ◽  
Vol 11 (2) ◽  
pp. 839
Author(s):  
Shaofei Sun ◽  
Hongxin Zhang ◽  
Xiaotong Cui ◽  
Liang Dong ◽  
Muhammad Saad Khan ◽  
...  

This paper focuses on electromagnetic information security in communication systems. Classical correlation electromagnetic analysis (CEMA) is known as a powerful way to recover the cryptographic algorithm’s key. In the classical method, only one byte of the key is used while the other bytes are considered as noise, which not only reduces the efficiency but also is a waste of information. In order to take full advantage of useful information, multiple bytes of the key are used. We transform the key into a multidimensional form, and each byte of the key is considered as a dimension. The problem of the right key searching is transformed into the problem of optimizing correlation coefficients of key candidates. The particle swarm optimization (PSO) algorithm is particularly more suited to solve the optimization problems with high dimension and complex structure. In this paper, we applied the PSO algorithm into CEMA to solve multidimensional problems, and we also add a mutation operator to the optimization algorithm to improve the result. Here, we have proposed a multibyte correlation electromagnetic analysis based on particle swarm optimization. We verified our method on a universal test board that is designed for research and development on hardware security. We implemented the Advanced Encryption Standard (AES) cryptographic algorithm on the test board. Experimental results have shown that our method outperforms the classical method; it achieves approximately 13.72% improvement for the corresponding case.


Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. R767-R781 ◽  
Author(s):  
Mattia Aleardi ◽  
Silvio Pierini ◽  
Angelo Sajeva

We have compared the performances of six recently developed global optimization algorithms: imperialist competitive algorithm, firefly algorithm (FA), water cycle algorithm (WCA), whale optimization algorithm (WOA), fireworks algorithm (FWA), and quantum particle swarm optimization (QPSO). These methods have been introduced in the past few years and have found very limited or no applications to geophysical exploration problems thus far. We benchmark the algorithms’ results against the particle swarm optimization (PSO), which is a popular and well-established global search method. In particular, we are interested in assessing the exploration and exploitation capabilities of each method as the dimension of the model space increases. First, we test the different algorithms on two multiminima and two convex analytic objective functions. Then, we compare them using the residual statics corrections and 1D elastic full-waveform inversion, which are highly nonlinear geophysical optimization problems. Our results demonstrate that FA, FWA, and WOA are characterized by optimal exploration capabilities because they outperform the other approaches in the case of optimization problems with multiminima objective functions. Differently, QPSO and PSO have good exploitation capabilities because they easily solve ill-conditioned optimizations characterized by a nearly flat valley in the objective function. QPSO, PSO, and WCA offer a good compromise between exploitation and exploration.


Sign in / Sign up

Export Citation Format

Share Document