Measuring Musical Rhythm Similarity: Statistical Features Versus Transformation Methods

Author(s):  
Juan F. Beltran ◽  
Xiaohua Liu ◽  
Nishant Mohanchandra ◽  
Godfried T. Toussaint

Two approaches to measuring the similarity between symbolically notated musical rhythms are compared with each other and with human judgments of perceived similarity. The first is the edit-distance, a popular transformation method, applied to the symbolic rhythm sequences. The second approach employs the histograms of the inter-onset-intervals (IOIs) calculated from the rhythms. Furthermore, two methods for dealing with the histograms are also compared. The first utilizes the Mallows distance, a transformation method akin to the Earth-Movers distance popular in computer vision, and the second extracts a group of standard statistical features, used in music information retrieval, from the IOI-histograms. The measures are compared using four contrastive musical rhythm data sets by means of statistical Mantel tests that compute correlation coefficients between the various dissimilarity matrices. The results provide evidence from the aural domain, that transformation methods such as the edit distance are superior to feature-based methods for predicting human judgments of similarity. The evidence also supports the hypothesis that IOI-histogram-based methods are better than music-theoretical structural features computed from the rhythms themselves, provided that the rhythms do not share identical IOI histograms.

2021 ◽  
pp. 1-27
Author(s):  
Anna Naszodi ◽  
Francisco Mendonca

Abstract We develop a method which assumes that marital preferences are characterized either by the scalar-valued measure proposed by Liu and Lu, or by the matrix-valued generalized Liu–Lu measure. The new method transforms an observed contingency table into a counterfactual table while preserving its (generalized) Liu–Lu value. After exploring some analytical properties of the new method, we illustrate its application by decomposing changes in the prevalence of homogamy in the US between 1980 and 2010. We perform this decomposition with two alternative transformation methods as well where both methods capture preferences differently from Liu and Lu. Finally, we use survey evidence to support our claim that out of the three considered methods, the new transformation method is the most suitable for identifying the role of marital preferences at shaping marriage patterns. These data are also in favor of measuring assortativity in preferences à la Liu and Lu.


Author(s):  
Daniel Fulger ◽  
Enrico Scalas ◽  
Guido Germano

AbstractThe speed of many one-line transformation methods for the production of, for example, Lévy alpha-stable random numbers, which generalize Gaussian ones, and Mittag-Leffler random numbers, which generalize exponential ones, is very high and satisfactory for most purposes. However, fast rejection techniques like the ziggurat by Marsaglia and Tsang promise a significant speed-up for the class of decreasing probability densities, if it is possible to complement them with a method that samples the tails of the infinite support. This requires the fast generation of random numbers greater or smaller than a certain value. We present a method to achieve this, and also to generate random numbers within any arbitrary interval. We demonstrate the method showing the properties of the transformation maps of the above mentioned distributions as examples of stable and geometric stable random numbers used for the stochastic solution of the space-time fractional diffusion equation.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 677
Author(s):  
Beong In Yun

In this work we introduce new rational transformations which are available for numerical evaluation of weakly singular integrals and Cauchy principal value integrals. The proposed rational transformations include parameters playing an important role in accelerating the accuracy of the Gauss quadrature rule used for the singular integrals. Results of some selected numerical examples show the efficiency of the proposed transformation method compared with some existing transformation methods.


2017 ◽  
Vol 53 (No. 4) ◽  
pp. 133-143 ◽  
Author(s):  
M. Niazian ◽  
S.A. Sadat Noori ◽  
P. Galuszka ◽  
S.M.M. Mortazavian

Gene transformation can be done in direct and indirect (Agrobacterium-mediated) ways. The most efficient method of gene transformation to date is Agrobacterium-mediated method. The main problem of Agrobacterium-method is that some plant species and mutant lines are recalcitrant to regeneration. Requirements for sterile conditions for plant regeneration are another problem of Agrobacterium-mediated transformation. Development of genotype-independent gene transformation method is of great interest in many plants. Some tissue culture-independent Agrobacterium-mediated gene transformation methods are reported in individual plants and crops. Generally, these methods are called in planta gene transformation. In planta transformation methods are free from somaclonal variation and easier, quicker, and simpler than tissue culture-based transformation methods. Vacuum infiltration, injection of Agrobacterium culture to plant tissues, pollen-tube pathway, floral dip and floral spray are the main methods of in planta transformation. Each of these methods has its own advantages and disadvantages. Simplicity and reliability are the primary reasons for the popularity of the in planta methods. These methods are much quicker than regular tissue culture-based Agrobacterium-mediated gene transformation and success can be achieved by non-experts. In the present review, we highlight all methods of in planta transformation comparing them with regular tissue culture-based Agrobacterium-mediated transformation methods and then recently successful transformations using these methods are presented.


2019 ◽  
Vol 1 (1) ◽  
pp. 15-26
Author(s):  
Ismaliza Ishak

This article is aimed at analyzing the transformation method applied by two selected monodrama actors, Sabera Shaik in monodrama theater "Lady Swettenham" and Shahrul Mizad Asyaari in the monodrama theater "Waiting for the Green Light". This study takes into account some of the transformation methods used for conveying appreciation and visually inspiring the audience. Through the survey method of secondary and premature data and directly involved in the spectacle, the illustration is clearly detailed through scientific analysis in the performance of monodrama acting. These two presentations can illustrate the success of the transformation method and are indirectly made between the basic recommendations to the solo acting method. Using the Imitation theory approach by Albert Bandura and method acting (Stanislavski) this approach can be used as a benchmark for non-realistic acting representation.


2022 ◽  
pp. 34-40
Author(s):  
A. V. Solomennikov ◽  
A. I. Tyukavin ◽  
N. A. Arseniev

The presented work reflects the author’s algorithm of mathematical processing and possible interpretations of the results obtained when creating expert analytical systems using computer technology. As initial parameters for the construction of neural networks of the second level, it is proposed to use individual results of calculations of the ratios of a number of laboratory indicators capable of forming a single functional cluster (leukogram, indicators of water-electrolyte balance, protein fractions, etc.). Further, using the proposed calculation algorithm and the archive database, structural features in the ′deformation′ of the ratio panel were compared against the background of the growth of each indicator, a matrix table was built reflecting the degree (correlation coefficients, KCr) of the coincidence of the features of the formation of the structure of the obtained panels of the parameters determined in individual observations. At high values of KCr, a conclusion is made about their (determined parameters) unified participation in the mechanism of emerging disorders. Thus, the system allows you to establish a leading complex of associated relationships by changes in the structure of ratios in the selected panel, corresponding to the dynamics of deviation of the target (analyzed) indicator, thereby differentiating the different mechanisms of formation of pathological deviations in this patient, the manifestation and balance of their values in the system-wide response, to evaluate the specific value of the absolute indicator as the final result of such interaction at the time of examination of the patient. The approach used, proposed by the authors, allows us to evaluate not only quantitative relationships, but also the features of the manifestation of the functional properties of the evaluated indicators. All of the above significantly expands the informativeness of the obtained laboratory data, allowing us to build a reasonable paradigm of the connections of the emerging complex of pathological disorders in each individual case. In the list of references, the authors cite publications as concrete examples of the use of the proposed approach in assessing a complex of disorders with different pathological processes using different panels in calculations.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Feng Tian ◽  
Xiaolin Gui ◽  
Jian An ◽  
Pan Yang ◽  
Jianqiang Zhao ◽  
...  

As cloud computing services and location-aware devices are fully developed, a large amount of spatial data needs to be outsourced to the cloud storage provider, so the research on privacy protection for outsourced spatial data gets increasing attention from academia and industry. As a kind of spatial transformation method, Hilbert curve is widely used to protect the location privacy for spatial data. But sufficient security analysis for standard Hilbert curve (SHC) is seldom proceeded. In this paper, we propose an index modification method for SHC (SHC∗) and a density-based space filling curve (DSC) to improve the security of SHC; they can partially violate the distance-preserving property of SHC, so as to achieve better security. We formally define theindistinguishabilityand attack model for measuring the privacy disclosure risk of spatial transformation methods. The evaluation results indicate that SHC∗and DSC are more secure than SHC, and DSC achieves the best index generation performance.


2016 ◽  
Vol 83 (2) ◽  
Author(s):  
Nicolaus A. Herman ◽  
Jeffrey Li ◽  
Ripika Bedi ◽  
Barbara Turchi ◽  
Xiaoji Liu ◽  
...  

ABSTRACT While a majority of academic studies concerning acetone, butanol, and ethanol (ABE) production by Clostridium have focused on Clostridium acetobutylicum, other members of this genus have proven to be effective industrial workhorses despite the inability to perform genetic manipulations on many of these strains. To further improve the industrial performance of these strains in areas such as substrate usage, solvent production, and end product versatility, transformation methods and genetic tools are needed to overcome the genetic intractability displayed by these species. In this study, we present the development of a high-efficiency transformation method for the industrial butanol hyperproducer Clostridium saccharoperbutylacetonicum strain N1-4 (HMT) ATCC 27021. Following initial failures, we found that the key to creating a successful transformation method was the identification of three distinct colony morphologies (types S, R, and I), which displayed significant differences in transformability. Working with the readily transformable type I cells (transformation efficiency, 1.1 × 106 CFU/μg DNA), we performed targeted gene deletions in C. saccharoperbutylacetonicum N1-4 using a homologous recombination-mediated allelic exchange method. Using plasmid-based gene overexpression and targeted knockouts of key genes in the native acetone-butanol-ethanol (ABE) metabolic pathway, we successfully implemented rational metabolic engineering strategies, yielding in the best case an engineered strain (Clostridium saccharoperbutylacetonicum strain N1-4/pWIS13) displaying an 18% increase in butanol titers and 30% increase in total ABE titer (0.35 g ABE/g sucrose) in batch fermentations. Additionally, two engineered strains overexpressing aldehyde/alcohol dehydrogenases (encoded by adh11 and adh5) displayed 8.5- and 11.8-fold increases (respectively) in batch ethanol production. IMPORTANCE This paper presents the first steps toward advanced genetic engineering of the industrial butanol producer Clostridium saccharoperbutylacetonicum strain N1-4 (HMT). In addition to providing an efficient method for introducing foreign DNA into this species, we demonstrate successful rational engineering for increasing solvent production. Examples of future applications of this work include metabolic engineering for improving desirable industrial traits of this species and heterologous gene expression for expanding the end product profile to include high-value fuels and chemicals.


Author(s):  
Robin Elder ◽  
Ian Woods ◽  
Sunil Patil ◽  
William Holmes ◽  
Robin Steed ◽  
...  

Accurate and efficient prediction of blade damping is one essential element in the engineering of durable and reliable compressors and turbines. Over the years, a variety of empirical and linearized methods have been developed and used, and have served well. Recently, the development of efficient unsteady CFD methods combined with an expansion in available and affordable computing power has enabled CFD analysis of blade damping. This paper looks at the prediction of aerodynamic blade damping using some recently developed CFD methods. Unsteady CFD methods are used to predict the fluid flow in a transonic fan rotor, with tip Mach number of about 1.4. Deformation of the blade is determined from a mechanical pre-stressed modal analysis. In this investigation, blade motion for the first bending moments is prescribed in the CFD code, for a range of nodal diameters. After periodic unsteady solutions are obtained, damping coefficients are calculated based on the predicted blade forces and the specified blade motion. Traditional unsteady CFD methods require the simulation of many blades in a given row, depending on the nodal diameter. For instance, for a nodal diameter of four, a wheel with 22 blades would require simulation of eleven blades. Computational methods have been developed which now enable simulation of only a few (1 or 2) blades per row yet yield the full sector solution, thus providing considerable savings in computing time and machine resources. The properties of the available methods vary, but one method, the Fourier Transformation method, has the property that it is frequency preserving, and hence suitable for the present task. Fourier Transformation predictions, for a variety of nodal diameters, are compared with full sector predictions. Positive damping was predicted for this range of nodal diameters at design speed near peak efficiency operating condition indicating a stable system. The Fourier Transformation predictions for blade aerodynamic damping match very closely the reference full sector solutions. The Fourier transformation methods also provide solutions 3.5 times faster than average periodic reference cases.


Sign in / Sign up

Export Citation Format

Share Document