AN OPTIMIZED LOW POWER PIPELINE ANALOG-TO-DIGITAL CONVERTER FOR HIGH-SPEED WLAN APPLICATION

2014 ◽  
Vol 23 (05) ◽  
pp. 1450059 ◽  
Author(s):  
MAO YE ◽  
BIN WU ◽  
YONGXU ZHU ◽  
YUMEI ZHOU

This paper presents the design and implementation of a 11-bit 160 MSPS analog-to-digital converter (ADC) for next generation super high-speed wireless local area network (WLAN) application. The ADC core consists of one front sample and hold stage and four cascades of 2.5 bit pipeline stages with opamp sharing between successive stages. To achieve low power dissipation at 1.2 V supply, a single stage symmetrical amplifier with double transimpedance gain-boosting amplifier is proposed. High speed on-chip reference buffer with replica source follower is also included for linearity performance. The ADC was fabricated in a standard 130-nm CMOS process and an occupied silicon area of 0.95 mm × 1.15 mm. Performance of 73 dB spurious-free-dynamic-range is measured at 160 MS/s with 1 Vpp input signal. The power dissipation of the analog core chip is only 50 mW from a 1.2 V supply.

2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Mostafa Chakir ◽  
Hicham Akhamal ◽  
Hassan Qjidaa

The CMOS Monolithic Active Pixel Sensor (MAPS) for the International Linear Collider (ILC) vertex detector (VXD) expresses stringent requirements on their analog readout electronics, specifically on the analog-to-digital converter (ADC). This paper concerns designing and optimizing a new architecture of a low power, high speed, and small-area 4-bit column-parallel ADC Flash. Later in this study, we propose to interpose an S/H block in the converter. This integration of S/H block increases the sensitiveness of the converter to the very small amplitude of the input signal from the sensor and provides a sufficient time to the converter to be able to code the input signal. This ADC is developed in 0.18 μm CMOS process with a pixel pitch of 35 μm. The proposed ADC responds to the constraints of power dissipation, size, and speed for the MAPS composed of a matrix of 64 rows and 48 columns where each column ADC covers a small area of 35 × 336.76 μm2. The proposed ADC consumes low power at a 1.8 V supply and 100 MS/s sampling rate with dynamic range of 125 mV. Its DNL and INL are 0.0812/−0.0787 LSB and 0.0811/−0.0787 LSB, respectively. Furthermore, this ADC achieves a high speed more than 5 GHz.


Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 165
Author(s):  
Shouping Li ◽  
Yang Guo ◽  
Jianjun Chen ◽  
Bin Liang

This paper presents a foreground digital calibration algorithm based on a dynamic comparator that aims to reduce comparator offset and capacitor mismatch, as well as improve the performance of the successive approximation analog-to-digital converter (SARADC). The dynamic comparator is designed with two preamplifiers and one latch to facilitate high speed, high precision, and low noise. The foreground digital calibration algorithm provides high speed with minimal area consumption. This design is implemented on a 12-bit 30 MS/s SARADC with a standard 0.13 μm Complementary Metal Oxide Semiconductor (CMOS) process. The simulation Nyquist 68.56 dB signal-to-noise-and-distortion ratio (SNDR) and 84.45 dBc spurious free dynamic range (SFDR) at 30 MS/s, differential nonlinearity (DNL) and integral nonlinearity (INL) are within 0.64 Least Significant Bits (LSB) and 1.3 LSB, respectively. The ADC achieves an effective number of bits (ENOB) of 11.08 and a figure-of-merit (FoM) of 39.45 fJ/conv.-step.


2020 ◽  
Vol 17 (1) ◽  
pp. 451-455
Author(s):  
Yahya Mohammed Ali Al-Naamani ◽  
K. Lokesh Krishna ◽  
A. M. Guna Sekhar

In recent years and continuing, widespread research work is carried out on medical implantable devices placed inside the human body. The essential and vital electronic circuit in implantable devices is the Analog to Digital Converter (ADC). The essential requirements in these applications such as long battery life-time, low power consumption and less die area poses a stringent requirement in designing and fabricating an ultra-low power ADCs. Among the diverse converter architectures existing, Successive Approximation Register (SAR) type converter architecture has shown better capabilities in terms of ultra-low power operation, medium resolution, less form factor and less silicon area. In this described paper a novel power effective, better resolution SAR type ADC to be used for biomedical related applications. The proposed work consists of capacitive type Digital to Analog Converter (DAC) based on charge distribution, a CMOS comparator, and SAR logic implemented using D-flip-flops. The different blocks of SAR architecture are simulated using EDA tools in CMOS 180 nm N-well process operated at VDD = 1.5 V voltage (VDD). The circuit is measured under various input frequencies with a sampling speed of 50 MHz and it consumes 22.6 μW. The proposed ADC technology shows SNDR of 48.6 dB and occupies a circuit area of 0.11 mm2 and the measured INL and DNL is calculated to be fewer than 0.54 LSB and 0.45 LSB respectively.


Sign in / Sign up

Export Citation Format

Share Document