Low-power 1.25-GHZ signal bandwidth 4-bit CMOS analog-to-digital converter for high spurious-free dynamic range wideband communications

Author(s):  
Mingzhen Wang ◽  
Chien-In Henry Chen
2014 ◽  
Vol 23 (06) ◽  
pp. 1450090 ◽  
Author(s):  
ARASH ESMAILI ◽  
HADISEH BABAZADEH ◽  
KHAYROLLAH HADIDI ◽  
ABDOLLAH KHOEI

A 13-bit analog-to-digital converter (ADC) is designed in 0.35 μm CMOS technology that reduces the power consumption through sharing the resources between pipeline stages. Using a dummy sample-and-hold (S/H) and recirculating concept the requirements for the first stage are relaxed and the design restrictions are resolved. This ADC does not use a dedicated S/H and reaches a speed of 50 MS/s. The design is tested with TSMC mixed-signal 0.35 μm technology and post layout simulations shows over 75 dB Signal-to-Noise and Distortion-Ratio (SNDR) and over 85 dB Spurious Free Dynamic Range (SFDR) at the Nyquist frequency. The designed chip occupies an area of 1.3 mm–0.7 mm and consumes 164 mW power at Nyquist from a 3.3 V supply.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Rongzong Kang ◽  
Pengwu Tian ◽  
Hongyi Yu

Analog-to-information converter (AIC) plays an important role in the compressed sensing system; it has the potential to significantly extend the capabilities of conventional analog-to-digital converter. This paper evaluates the impact of AIC nonlinearity on the dynamic performance in practical compressed sensing system, which included the nonlinearity introduced by quantization as well as the circuit non-ideality. It presents intuitive yet quantitative insights into the harmonics of quantization output of AIC, and the effect of other AIC nonlinearity on the spurious dynamic range (SFDR) performance is also analyzed. The analysis and simulation results demonstrated that, compared with conventional ADC-based system, the measurement process decorrelates the input signal and the quantization error and alleviate the effect of other decorrelates of AIC, which results in a dramatic increase in spurious free dynamic range (SFDR).


2013 ◽  
Vol 760-762 ◽  
pp. 561-566
Author(s):  
Si Kui Ren ◽  
Zhi Qun Li

This paper presents a low power low voltage 7bit 16MS/s SAR ADC (successive approximation register analog-to-digital converter) for the application of ZigBee receiver. The proposed 7-bit ADC is designed and simulated in 180nm RF CMOS technology. Post simulation results show that at 1.0-V supply and 16 MS/s, the ADC achieves a SNDR (signal-to-noise-and-distortion ratio) and SFDR (Spurious Free Dynamic Range) are 43.6dB, 57.4dB respectively. The total power dissipation is 228μW, and it occupies a chip area of 0.525 mm2. It results in a figure-of-merit (FOM) of 0.11pJ/step.


2014 ◽  
Vol 23 (05) ◽  
pp. 1450059 ◽  
Author(s):  
MAO YE ◽  
BIN WU ◽  
YONGXU ZHU ◽  
YUMEI ZHOU

This paper presents the design and implementation of a 11-bit 160 MSPS analog-to-digital converter (ADC) for next generation super high-speed wireless local area network (WLAN) application. The ADC core consists of one front sample and hold stage and four cascades of 2.5 bit pipeline stages with opamp sharing between successive stages. To achieve low power dissipation at 1.2 V supply, a single stage symmetrical amplifier with double transimpedance gain-boosting amplifier is proposed. High speed on-chip reference buffer with replica source follower is also included for linearity performance. The ADC was fabricated in a standard 130-nm CMOS process and an occupied silicon area of 0.95 mm × 1.15 mm. Performance of 73 dB spurious-free-dynamic-range is measured at 160 MS/s with 1 Vpp input signal. The power dissipation of the analog core chip is only 50 mW from a 1.2 V supply.


2009 ◽  
Vol 62 (3) ◽  
pp. 281-289 ◽  
Author(s):  
Mohammad Hossein Zarifi ◽  
Javad Frounchi ◽  
Shahin Farshchi ◽  
Jack W. Judy

Sign in / Sign up

Export Citation Format

Share Document