UNIFORM APPROACH FOR STABILITY ANALYSIS OF FAST SUBSYSTEM OF TWO-TIME SCALE NONLINEAR SYSTEMS

2007 ◽  
Vol 17 (11) ◽  
pp. 4195-4203 ◽  
Author(s):  
LUÍS F. C. ALBERTO ◽  
HSIAO-DONG CHIANG

A new uniform methodology to study the fast subsystem stability of general two-time scale nonlinear systems is developed. It consists of a direct method that provides estimates of the stability region of the fast subsystem that are uniform with respect to the slow variables, which are treated as uncertainties. The methodology is illustrated on small power systems leading to much improved results in estimating the stability region, critical clearing times as compared to traditional methods. As a by-product, it gives the required theoretical support to justify and to correct the heuristic approaches used in power system stability analysis literature.

2018 ◽  
Vol 41 (6) ◽  
pp. 1750-1760
Author(s):  
Erkan Kayacan

This paper addresses the Sliding Mode Learning Control (SMLC) of uncertain nonlinear systems with Lyapunov stability analysis. In the control scheme, a conventional control term is used to provide the system stability in compact space while a type-2 neuro-fuzzy controller (T2NFC) learns system behaviour so that the T2NFC completely takes over overall control of the system in a very short time period. The stability of the sliding mode learning algorithm has been proven in the literature; however, it is restrictive for systems without overall system stability. To address this shortcoming, a novel control structure with a novel sliding surface is proposed in this paper, and the stability of the overall system is proven for nth-order uncertain nonlinear systems. To investigate the capability and effectiveness of the proposed learning and control algorithms, the simulation studies have been carried out under noisy conditions. The simulation results confirm that the developed SMLC algorithm can learn the system behaviour in the absence of any mathematical model knowledge and exhibit robust control performance against external disturbances.


2003 ◽  
Vol 125 (3) ◽  
pp. 384-388 ◽  
Author(s):  
Rifat Sipahi ◽  
Nejat Olgac

Various active vibration suppression techniques, which use feedback control, are implemented on the structures. In real application, time delay can not be avoided especially in the feedback line of the actively controlled systems. The effects of the delay have to be thoroughly understood from the perspective of system stability and the performance of the controlled system. Often used control laws are developed without taking the delay into account. They fulfill the design requirements when free of delay. As unavoidable delay appears, however, the performance of the control changes. This work addresses the stability analysis of such dynamics as the control law remains unchanged but carries the effect of feedback time-delay, which can be varied. For this stability analysis along the delay axis, we follow up a recent methodology of the authors, the Direct Method (DM), which offers a unique and unprecedented treatment of a general class of linear time invariant time delayed systems (LTI-TDS). We discuss the underlying features and the highlights of the method briefly. Over an example vibration suppression setting we declare the stability intervals of the dynamics in time delay space using the DM. Having assessed the stability, we then look at the frequency response characteristics of the system as performance indications.


1987 ◽  
Vol 109 (4) ◽  
pp. 410-413 ◽  
Author(s):  
Norio Miyagi ◽  
Hayao Miyagi

This note applies the direct method of Lyapunov to stability analysis of a dynamical system with multiple nonlinearities. The essential feature of the Lyapunov function used in this note is a non-Lure´ type Lyapunov function which surpasses the Lure´-type Lyapunov function from the point of view of the stability region guaranteed. A modified version of the multivariable Popov criterion is used to construct non-Lure´ type Lyapunov function, which allow for the dynamical sytems with multiple nonlinearities.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yanbo Che ◽  
Zihan Lv ◽  
Jianmei Xu ◽  
Jingjing Jia ◽  
Ming Li

With the extensive application of power electronics interfaced nonsynchronous energy sources (NESs) in modern power systems, the system stability especially the transient stability is prominently deteriorated, and it is crucial to find a comprehensive and reasonably simple solution. This paper proposes a direct method-based transient stability analysis (DMTSA) method which concludes the key steps as follows: (1) the system modeling of Lyapunov functions using mixed potential function theory and (2) the stability evaluation of critical energy estimation. A voltage source converter- (VSC-) based HVDC transmission system is simulated in a weak power grid to validate the proposed DMTSA method under various disturbances. The simulation results verify that the proposed method can effectively estimate the transient stability with significant simplicity and generality, which is practically useful to secure the operation and control for power electronics-dominated power systems.


Author(s):  
Jafar Abbaszadeh Chekan ◽  
Kaveh Merat ◽  
Hassan Zohoor

In this investigation, the stability analysis of a rotating elastic stepped shaft is studied and the sufficient condition for system stability in the sense of Lyapunov is derived. The model consists of an elastic stepped shaft which is clamped rigidly to a rotary device. From the model’s point of view, the entire length of shaft is partitioned into uniform segments with different characteristics. The Lyapunov direct method is applied in this survey where the Hamilton function has been chosen as the candidate Lyapunov function. Since the dynamical mode shapes of the shaft are required for the stability analysis, the shaft has been modeled by the Euler–Bernoulli beam theory and the corresponding mode shapes have been derived based on the boundary conditions and the continuity conditions between adjacent segments. In this study, the shaft is considered to have two segments with different properties. It is notable that this model can be an appropriate model for the spindle in tool machines. Our aim in this research study is determining the area of stability for the system considering the shaft characteristics. The effects of bending stiffness and mass distribution parameters of each segment are investigated on the stability margins of the system.


Author(s):  
K. Al-Durgham ◽  
D. D. Lichti ◽  
I. Detchev ◽  
G. Kuntze ◽  
J. L. Ronsky

A fundamental task in photogrammetry is the temporal stability analysis of a camera/imaging-system’s calibration parameters. This is essential to validate the repeatability of the parameters’ estimation, to detect any behavioural changes in the camera/imaging system and to ensure precise photogrammetric products. Many stability analysis methods exist in the photogrammetric literature; each one has different methodological bases, and advantages and disadvantages. This paper presents a simple and rigorous stability analysis method that can be straightforwardly implemented for a single camera or an imaging system with multiple cameras. The basic collinearity model is used to capture differences between two calibration datasets, and to establish the stability analysis methodology. Geometric simulation is used as a tool to derive image and object space scenarios. Experiments were performed on real calibration datasets from a dual fluoroscopy (DF; X-ray-based) imaging system. The calibration data consisted of hundreds of images and thousands of image observations from six temporal points over a two-day period for a precise evaluation of the DF system stability. The stability of the DF system – for a single camera analysis – was found to be within a range of 0.01 to 0.66 mm in terms of 3D coordinates root-mean-square-error (RMSE), and 0.07 to 0.19 mm for dual cameras analysis. It is to the authors’ best knowledge that this work is the first to address the topic of DF stability analysis.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Khalid Hattaf

This paper aims to study the stability of fractional differential equations involving the new generalized Hattaf fractional derivative which includes the most types of fractional derivatives with nonsingular kernels. The stability analysis is obtained by means of the Lyapunov direct method. First, some fundamental results and lemmas are established in order to achieve the goal of this study. Furthermore, the results related to exponential and Mittag–Leffler stability existing in recent studies are extended and generalized. Finally, illustrative examples are presented to show the applicability of our main results in some areas of science and engineering.


Author(s):  
Zaid Garcia Sanchez ◽  
Jose Antonio González ◽  
Gustavo Crespo ◽  
Hernan Hernandez Herrera ◽  
Jorge Iván Silva

<span lang="EN-US">Voltage Stability has emerged in recent decades as one of the most common phenomena, occurrence in Electrical Power Systems. Prior researches focused on the development of algorithm indices to solve the stability problem and in the determination of factors with most influence in voltage collapse to solve the stability problem. This paper evaluates the influence that the load dependence has with the voltage on the phenomenon of the voltage stability and especially on the characteristics the collapse point or instability point. Load modeling used is detailed and comparisons of the results obtained are made with those described in the bibliography and those obtained with commercial software. The results of the load margin are also compared when a constant load or a voltage-dependent load is considered as well as the values obtained at the maximum load point and the point of voltage instability.</span>


2014 ◽  
Vol 960-961 ◽  
pp. 1588-1591
Author(s):  
Xiang Dong Zhao ◽  
Xin Zhao ◽  
Ming Jun Lv ◽  
Jian Guo Liu ◽  
Feng Zhen Liu ◽  
...  

The Internet and the gradual implementation of the continuous power grid market in recent years make the power system more complex under different operating environment. Safe and stable operation of power grids have become increasingly important . With the rapidf development of the grid and constant innovation, safe and stable operation also has a new requirement , because the rapid development of the power system brings more This paper analyzes the causes of blackouts and reviews security of the power system stability problems related to measures on the security and stability of the power system operation .


Sign in / Sign up

Export Citation Format

Share Document