scholarly journals BUNDLE ADJUSTMENT-BASED STABILITY ANALYSIS METHOD WITH A CASE STUDY OF A DUAL FLUOROSCOPY IMAGING SYSTEM

Author(s):  
K. Al-Durgham ◽  
D. D. Lichti ◽  
I. Detchev ◽  
G. Kuntze ◽  
J. L. Ronsky

A fundamental task in photogrammetry is the temporal stability analysis of a camera/imaging-system’s calibration parameters. This is essential to validate the repeatability of the parameters’ estimation, to detect any behavioural changes in the camera/imaging system and to ensure precise photogrammetric products. Many stability analysis methods exist in the photogrammetric literature; each one has different methodological bases, and advantages and disadvantages. This paper presents a simple and rigorous stability analysis method that can be straightforwardly implemented for a single camera or an imaging system with multiple cameras. The basic collinearity model is used to capture differences between two calibration datasets, and to establish the stability analysis methodology. Geometric simulation is used as a tool to derive image and object space scenarios. Experiments were performed on real calibration datasets from a dual fluoroscopy (DF; X-ray-based) imaging system. The calibration data consisted of hundreds of images and thousands of image observations from six temporal points over a two-day period for a precise evaluation of the DF system stability. The stability of the DF system – for a single camera analysis – was found to be within a range of 0.01 to 0.66 mm in terms of 3D coordinates root-mean-square-error (RMSE), and 0.07 to 0.19 mm for dual cameras analysis. It is to the authors’ best knowledge that this work is the first to address the topic of DF stability analysis.

2018 ◽  
Vol 82 (1) ◽  
pp. 10701
Author(s):  
Xiaohui Gu ◽  
Lining Sun ◽  
Changhai Ru

In tapping-mode AFM, the steady-state characteristics of microcantilever are extremely important to determine the AFM performance. Due to the external excitation signal and the tip-sample interactions, the solving process of microcantilever motion equation will become very complicated with the traditional time-domain analysis method. In this paper, we propose the novel frequency-domain analysis method to analyze and improve the steady-state characteristics of microcantilever. Compared with the previous methods, this new method has three prominent advantages. Firstly, the analytical expressions of amplitude and phase of cantilever system can be derived conveniently. Secondly, the stability of the cantilever system can be accurately determined and the stability margin can be obtained quantitatively in terms of the phase margin and the magnitude margin. Thirdly, on this basis, external control mechanism can be devised quickly and easily to guarantee the high stability of the cantilever system. With this novel method, we derive the frequency response curves and discuss the great influence of the intrinsic parameters on the system stability, which provides theoretical guidance for selecting samples to achieve better AFM images in the experiments. Moreover, we introduce a new external series correction method to significantly increase the stability margin. The results indicate that the cantilever system is no longer easily disturbed by external interference signals.


2015 ◽  
Vol 26 (08) ◽  
pp. 1550092 ◽  
Author(s):  
Jie Zhou ◽  
Zhong-Ke Shi

Considering the effect of density difference, an extended lattice hydrodynamic model for bidirectional pedestrian flow is proposed in this paper. The stability condition is obtained by the use of linear stability analysis. It is shown that the stability of pedestrian flow varies with the reaction coefficient of density difference. Based on nonlinear analysis method, the Burgers, Korteweg–de Vries (KdV) and modified Korteweg–de Vries (MKdV) equations are derived to describe the triangular shock waves, soliton waves and kink–antikink waves in the stable, metastable and unstable regions, respectively. The results show that jams may be alleviated by considering the effect of density difference. The findings also indicate that in the process of building and subway station design, a series of auxiliary facilities should be considered in order to alleviate the possible pedestrian jams.


2018 ◽  
Vol 41 (6) ◽  
pp. 1750-1760
Author(s):  
Erkan Kayacan

This paper addresses the Sliding Mode Learning Control (SMLC) of uncertain nonlinear systems with Lyapunov stability analysis. In the control scheme, a conventional control term is used to provide the system stability in compact space while a type-2 neuro-fuzzy controller (T2NFC) learns system behaviour so that the T2NFC completely takes over overall control of the system in a very short time period. The stability of the sliding mode learning algorithm has been proven in the literature; however, it is restrictive for systems without overall system stability. To address this shortcoming, a novel control structure with a novel sliding surface is proposed in this paper, and the stability of the overall system is proven for nth-order uncertain nonlinear systems. To investigate the capability and effectiveness of the proposed learning and control algorithms, the simulation studies have been carried out under noisy conditions. The simulation results confirm that the developed SMLC algorithm can learn the system behaviour in the absence of any mathematical model knowledge and exhibit robust control performance against external disturbances.


2019 ◽  
Vol 20 (9) ◽  
pp. 542-549 ◽  
Author(s):  
S. G. Bulanov

The approach to the analysis of Lyapunov systems stability of linear ordinary differential equations based on multiplicative transformations of difference schemes of numerical integration is presented. As a result of transformations, the stability criteria in the form of necessary and sufficient conditions are formed. The criteria are invariant with respect to the right side of the system and do not require its transformation with respect to the difference scheme, the length of the gap and the step of the solution. A distinctive feature of the criteria is that they do not use the methods of the qualitative theory of differential equations. In particular, for the case of systems with a constant matrix of the coefficients it is not necessary to construct a characteristic polynomial and estimate the values of the characteristic numbers. When analyzing the system stability with variable matrix coefficients, it is not necessary to calculate the characteristic indicators. The varieties of criteria in an additive form are obtained, the stability analysis based on them being equivalent to the stability assessment based on the criteria in a multiplicative form. Under the conditions of a linear system stability (asymptotic stability) of differential equations, the criteria of the systems stability (asymptotic stability) of linear differential equations with a nonlinear additive are obtained. For the systems of nonlinear ordinary differential equations the scheme of stability analysis based on linearization is presented, which is directly related to the solution under study. The scheme is constructed under the assumption that the solution stability of the system of a general form is equivalent to the stability of the linearized system in a sufficiently small neighborhood of the perturbation of the initial data. The matrix form of the criteria allows implementing them in the form of a cyclic program. The computer analysis is performed in real time and allows coming to an unambiguous conclusion about the nature of the system stability under study. On the basis of a numerical experiment, the acceptable range of the step variation of the difference method and the interval length of the difference solution within the boundaries of the reliability of the stability analysis is established. The approach based on the computer analysis of the systems stability of linear differential equations is rendered. Computer testing has shown the feasibility of using this approach in practice.


2006 ◽  
Vol 18 (3) ◽  
pp. 242-248 ◽  
Author(s):  
Mizuho Shibata ◽  
◽  
Shinichi Hirai

To analyze the stability of dynamic control through asoft interface-the viscoelastic material between a manipulating finger and a manipulated object- we model dynamic control through the soft interface in continuous-discrete time. We then formulate dynamics using a modified z-transform in continuous-discrete time for feedback and feedforward control. We show that system stability depends on the viscoelasticity of the soft interface for feedback control. The relationship between material viscosity and sampling time in critical stability is not monotonous, a phenomenon we analyze by root locus. We compare stability analysis by the modified z-transform, simulations based on the Runge-Kutta method, and a regular z-transform, demonstrating that the relationship is specific to a continuous-discrete time.


2003 ◽  
Vol 125 (3) ◽  
pp. 384-388 ◽  
Author(s):  
Rifat Sipahi ◽  
Nejat Olgac

Various active vibration suppression techniques, which use feedback control, are implemented on the structures. In real application, time delay can not be avoided especially in the feedback line of the actively controlled systems. The effects of the delay have to be thoroughly understood from the perspective of system stability and the performance of the controlled system. Often used control laws are developed without taking the delay into account. They fulfill the design requirements when free of delay. As unavoidable delay appears, however, the performance of the control changes. This work addresses the stability analysis of such dynamics as the control law remains unchanged but carries the effect of feedback time-delay, which can be varied. For this stability analysis along the delay axis, we follow up a recent methodology of the authors, the Direct Method (DM), which offers a unique and unprecedented treatment of a general class of linear time invariant time delayed systems (LTI-TDS). We discuss the underlying features and the highlights of the method briefly. Over an example vibration suppression setting we declare the stability intervals of the dynamics in time delay space using the DM. Having assessed the stability, we then look at the frequency response characteristics of the system as performance indications.


1981 ◽  
Vol 11 ◽  
Author(s):  
W. Raab ◽  
C. Frohn ◽  
M.W. Schmidt

ABSTRACTThe geomechanical and mining-technological aspects of the construction of salt caverns as disposal chambers have been investigated during project phase 2, completed by mid 1981. With a view towards the stability analysis of such a cavern, FEM-estimates have been carried out and evaluated. From these it can be derived that- a rotational ellipsoid would be the most suitable shape- its dimensions should be 82 m (vertical axis) and 42 m (horizontal axis)- the distance (safety pillar) between the neighbouring caverns should be 170 m (vertical) and 180 m (horizontal).For practical engineering purposes the rotational ellipsoid can be modified into a cylinder with conic bottom and top. The numerical model simulated the short term as well as the long term characteristics of the surrounding salt rocks. The short term characteristics were assessed by an elastic approach, the long term characteristics by a rheological model. The input parameters have been determined by means of laboratory tests on ASSE rock salt.In a second step the characteristics of partially and completely filled caverns were simulated. It was shown clearly that deformation of the salt rock comes to a halt when counteracted by the filling.Based upon the results of the stability analysis, investigations were made to find out a suitable mining technique for the construction of the cavern. Solution mining and conventional development by means of drilling and blasting have been studied alternatively. Since both methods have their advantages and disadvantages a decision in favour of the one or the other cannot be made until the actual site has been defined.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Shan Wu ◽  
Chao Li ◽  
Yipan Deng

Taking into account the deformation of a designed direct-operated seawater hydraulic relief valve in deep sea, which might have a great influence on the stability of the valve, a mathematic model of the relief valve was established and stability analysis was conducted. As the fitting clearances between the damping sleeve and the damping bar play a key role in the performance of the relief valve, the fitting clearances after deformation under pressure of different ocean depths were obtained using finite element method. Applying the deformation data to the relief valve model, the stability and relative stability could be analyzed quantitatively through both the frequency domain analysis method and the time domain analysis method to detect the influence of the fitting clearance after deformation. The simulation results show that the seawater relief valve has a stable performance within 4000 meters deep under the sea.


Author(s):  
Yeming Yao ◽  
Hua Zhou ◽  
Yinglong Chen ◽  
Huayong Yang

Counterbalance valves are widely used in hydraulic deck machinery to balance the overrunning loads. However, as is well known, counterbalance circuit designed with poor choice of counterbalance valve tends to introduce instability to the system. This paper investigates the dynamic behavior of a pilot operated counterbalance valve which can operate at a flow rate about 2000L/min. A linearized stability analysis of such a hydraulic circuit which consists of a slip in cartridge, a pilot counterbalance valve and a hydraulic winch is presented. Pole-zero plots are employed to reveal the effect of the volume of control cavity, the hydraulic resistance on pilot line and counterbalance valve pilot area ratio on the stability of the system. The analysis results indicate that such a system will be unstable within the normal range of each parameter. An alternative approach that guarantees system stability by adding an accumulator on the pilot line is put forward. The approach stabilizes the pilot pressure by reducing the hydro-stiffness of pilot control cavity, thus the system can reach its stability condition. Finally, a numerical optimization method is putted forward, with the optimized parameters, the dynamic performance of considered system become better.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6580
Author(s):  
Yixing Wang ◽  
Qianming Xu ◽  
Josep M. Guerrero

Due to the internal dynamics of the modular multilevel converter (MMC), the coupling between the positive and negative sequences in impedance, which is defined as frequency coupling, inherently exists in MMC. Ignoring the frequency coupling of the MMC impedance model may lead to inaccurate stability assessment, and thus the multi-input multi-output (MIMO) impedance model has been developed to consider the frequency coupling effect. However, the generalized Nyquist criterion (GNC), which is used for the stability analysis of an MIMO model, is more complicated than the stability analysis method applied on single-input-single-output (SISO) models. Meanwhile, it is not always the case that the SISO model fails in the stability assessment. Therefore, the conditions when the MIMO impedance model needs to be considered in the stability analysis of an MMC system should be analyzed. This paper quantitatively analyzes the effect of frequency coupling on the stability analysis of grid-connected MMC, and clarifies the frequency range and grid conditions that the coupling effect required to be considered in the stability analysis. Based on the quantitative relations between the frequency coupling and the stability analysis of the grid-connected MMC system, a simple and accurate stability analysis method for the grid-connected MMC system is proposed, where the MIMO impedance model is applied when the frequency coupling has a significant effect and the SISO impedance model is used if the frequency coupling is insignificant.


Sign in / Sign up

Export Citation Format

Share Document