Attack on a Chaos-Based Random Number Generator Using Anticipating Synchronization

2015 ◽  
Vol 25 (02) ◽  
pp. 1550021
Author(s):  
Ramazan Yeniçeri ◽  
Selçuk Kilinç ◽  
Müştak E. Yalçin

Chaotic systems have been used in random number generation, owing to the property of sensitive dependence on initial conditions and hence the possibility to produce unpredictable signals. Within the types of chaotic systems, those which are defined by only one delay-differential equation are attractive due to their simple model. On the other hand, it is possible to synchronize to the future states of a time-delay chaotic system by anticipating synchronization. Therefore, random number generator (RNG), which employs such a system, might not be immune to the attacks. In this paper, attack on a chaos-based random number generator using anticipating synchronization is investigated. The considered time-delay chaotic system produces binary signals, which can directly be used as a source of RNG. Anticipating synchronization is obtained by incorporating other systems appropriately coupled to the original one. Quantification of synchronization is given by the bit error between the streams produced by the original and coupled systems. It is shown that the bit streams generated by the original system can be anticipated by the coupled systems beforehand.

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Jizhao Liu ◽  
Xiangzi Zhang ◽  
Qingchun Zhao ◽  
Jing Lian ◽  
Fangjun Huang ◽  
...  

Exploring and investigating new chaotic systems is a popular topic in nonlinear science. Although numerous chaotic systems have been introduced in the literature, few of them focus on torus-chaotic system. The aim of our short work is to widen the current knowledge of torus chaos. In this paper, a new torus-chaotic system is proposed, which has one positive Lyapunov exponent, two zero Lyapunov exponents, and two negative Lyapunov exponents. The dynamic behavior is investigated by Lyapunov exponents, bifurcations, and stability. The analysis shows that this system has an interesting route leading to chaos. Furthermore, the pseudorandom properties of output sequence are well studied and a random number generator algorithm is proposed, which has the potential of being used in several cyber security systems such as the verification code, secure QR code, and some secure communication protocols.


2008 ◽  
Vol 18 (03) ◽  
pp. 851-867 ◽  
Author(s):  
K. W. TANG ◽  
H. S. KWOK ◽  
WALLACE K. S. TANG ◽  
K. F. MAN

Random number generators are widely used in different applications. However, it is difficult to obtain a good random number generator in low precision and resource constrained system, such as an eight-bit micro-controller system which is still commonly used in industrial and consumer markets. This paper provides a practical solution for this problem based on chaotic systems. By the use of a modified Chua's circuit, it is demonstrated that the sampled state, after post-processing by a high-dimensional chaotic map, can be used as a random source even in an eight-bit environment. The randomness of the generated sequence is testified and confirmed by different statistical tests and the up-to-date statistical suite.


Author(s):  
Zhenlong Man ◽  
Jinqing Li ◽  
Xiaoqiang Di ◽  
Xu Liu ◽  
Jian Zhou ◽  
...  

AbstractIn cryptosystems, the generation of random keys is crucial. The random number generator is required to have a sufficiently fast generation speed to ensure the size of the keyspace. At the same time, the randomness of the key is an important indicator to ensure the security of the encryption system. The chaotic random number generator has been widely used in cryptosystems due to the uncertainty, non-repeatability, and unpredictability of chaotic systems. However, chaotic systems, especially high-dimensional chaotic systems, have slow calculation speed and long iteration time. This caused a conflict between the number of random keys and the speed of generation. In this paper, we introduce the Least Squares Generative Adversarial Networks(LSGAN)into random number generation. Using LSGAN’s powerful learning ability, a novel learning random number generator is constructed. Six chaotic systems with different structures and different dimensions are used as training sets to realize the rapid and efficient generation of random numbers. Experimental results prove that the encryption key generated by this scheme can pass all randomness tests of the National Institute of Standards and Technology (NIST). Hence, our result shows that LSGAN has the potential to improve the quality of the random number generators. Finally, the results are successfully applied to the image encryption scheme based on selective scrambling and overlay diffusion, and good results are achieved.


2020 ◽  
Vol 26 (1) ◽  
pp. 52-57 ◽  
Author(s):  
Fatih Ozkaynak

One of the practical applications of chaotic systems is the design of a random number generator. In the literature, generally random number generators are designed using discrete time chaotic systems. The reason for the use of the discrete time chaotic systems in the design architecture is that the latter have a simpler structure than the continuous time chaotic systems. In order to observe chaos in continuous time systems, the system must have at least three degrees. It is shown that for fractional order chaotic systems chaos can be observed even in a lower system degree. The aim of this study is to develop a random number generator using a fractional order chaotic Chua system. The proposed generator is analysed using various randomness tests. The analysis results show that the proposed generator passes the random requirements successfully. On the one hand, this study is important because it demonstrates the practical application of fractional order chaotic systems. On the other hand, it provides an alternative to designs based on discrete time chaotic systems.


2004 ◽  
Vol 14 (11) ◽  
pp. 3995-4008 ◽  
Author(s):  
WEIGUANG YAO ◽  
PEI YU ◽  
CHRISTOPHER ESSEX

In most published chaos-based communication schemes, the system's parameters used as a key could be intelligently estimated by a cracker based on the fact that information about the key is contained in the chaotic carrier. In this paper, we will show that the least significant digits (LSDs) of a signal from a chaotic system can be so highly random that the system can be used as a random number generator. Secure communication could be built between the synchronized generators nonetheless. The Lorenz system is used as an illustration.


Sign in / Sign up

Export Citation Format

Share Document