A Novel Lightweight Block Encryption Algorithm Based on Combined Chaotic S-Box

2021 ◽  
Vol 31 (10) ◽  
pp. 2150152
Author(s):  
Xiaojun Tong ◽  
Xudong Liu ◽  
Jing Liu ◽  
Miao Zhang ◽  
Zhu Wang

Due to high computational cost, traditional encryption algorithms are not suitable for the environments in which resources are limited. In view of the above problem, we first propose a combined chaotic map to increase the chaotic interval and Lyapunov exponent of the existing one-dimensional chaotic maps. Then, an S-box based on the proposed combined chaotic map is constructed. The performances of the designed S-box, such as bijection, nonlinearity, strict avalanche criteria, differential uniformity, the bits independence criterion, and the linear approximation probability, are tested to show that it has better cryptographic performances. Finally, we present a lightweight block encryption algorithm by using the above S-box. The algorithm is based on the generalized Feistel structure and SPN structure. In addtion, the processes of encryption and decryption of our algorithm are almost the same, which reduces the complexity of algorithm implementation. The experimental results show that the proposed encryption algorithm meets the requirements of lightweight algorithms and has good cryptographic characteristics.

2015 ◽  
Vol 742 ◽  
pp. 294-298
Author(s):  
Bin Lu ◽  
Yu Chen Li ◽  
Fen Lin Liu

A General Feistal Structure based color image encryption and authentication algorithm is designed in this paper. The plain image is first permuted, then divided into groups of size pixels and encrypted by block encryption algorithm; finally the cipher image is obtained by performing inverse permutation on the image. In which, block encryption function is the kernel part of the encryption algorithm, and is designed with general feistel structure. To provide integrality authentication function, the last cipher block is the cipher of the sum of all plain blocks. It’s from experiments and analysis that the algorithm is secure and valid.


2020 ◽  
Vol 224 ◽  
pp. 01043
Author(s):  
Larissa Cherckesova ◽  
Olga Safaryan ◽  
Pavel Razumov ◽  
Dmitry Medvedev ◽  
Veronica Kravchenko ◽  
...  

This report is devoted to the comparative analysis of the lightweight NASH block encryption algorithm and the algorithm presented by USA National Security Agency in 2013 – SPECK. Their detailed description is given, the analysis is made. The task of the study is to investigate and analyze cryptographic encryption algorithms used in devices with limited capabilities such as microcontrollers. The study of lightweight encryption algorithms and their application for cybersecurity tasks is necessary to create the latest cryptographic systems aimed at preventing various types of attacks. The study revealed that the NASH block encryption algorithm showed more optimized performance, since the number of rounds of cipher execution is less than that Speck algorithm, which provides greater stability of algorithm with least number of executable rounds.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jian Zhang ◽  
Yutong Zhang

Image encryption technology has been applied in many fields and is becoming the main way of protecting the image information security. There are also many ways of image encryption. However, the existing encryption algorithms, in order to obtain a better effect of encryption, always need encrypting several times. There is not an effective method to decide the number of encryption times, generally determined by the human eyes. The paper proposes an image encryption algorithm based on chaos and simultaneously proposes a balanced pixel algorithm to determine the times of image encryption. Many simulation experiments have been done including encryption effect and security analysis. Experimental results show that the proposed method is feasible and effective.


Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2778
Author(s):  
Shijie Zhang ◽  
Lingfeng Liu ◽  
Hongyue Xiang

Chaos systems have been widely used in image encryption algorithms. In this article, we introduce an LB (Logistic-Baker) compound chaotic map that can greatly improve the complexity of original Logistic map and Baker map, as well as the generated sequences have pseudo-randomness. Furthermore, based on the LB compound chaotic map, an image encryption algorithm is proposed. To resist the differential attack, and enhance the sensitivity of plain-text, the parameters of this algorithm are plain-text related. In this algorithm, the compound chaotic function is influenced by the plain-text image; thus, the specific form of this chaotic map, and its dynamics will be different when encrypting different images. Numerical experiment results indicate that the effect of this novel plain-text related image encryption scheme is excellent, as well as can be competitive with other corresponding algorithms.


2012 ◽  
Vol 2 (1) ◽  
pp. 7-9 ◽  
Author(s):  
Satinderjit Singh

Median filtering is a commonly used technique in image processing. The main problem of the median filter is its high computational cost (for sorting N pixels, the temporal complexity is O(N·log N), even with the most efficient sorting algorithms). When the median filter must be carried out in real time, the software implementation in general-purpose processorsdoes not usually give good results. This Paper presents an efficient algorithm for median filtering with a 3x3 filter kernel with only about 9 comparisons per pixel using spatial coherence between neighboring filter computations. The basic algorithm calculates two medians in one step and reuses sorted slices of three vertical neighboring pixels. An extension of this algorithm for 2D spatial coherence is also examined, which calculates four medians per step.


2020 ◽  
Vol 38 (3B) ◽  
pp. 98-103
Author(s):  
Atyaf S. Hamad ◽  
Alaa K. Farhan

This research presents a method of image encryption that has been designed based on the algorithm of complete shuffling, transformation of substitution box, and predicated image crypto-system. This proposed algorithm presents extra confusion in the first phase because of including an S-box based on using substitution by AES algorithm in encryption and its inverse in Decryption. In the second phase, shifting and rotation were used based on secrete key in each channel depending on the result from the chaotic map, 2D logistic map and the output was processed and used for the encryption algorithm. It is known from earlier studies that simple encryption of images based on the scheme of shuffling is insecure in the face of chosen cipher text attacks. Later, an extended algorithm has been projected. This algorithm performs well against chosen cipher text attacks. In addition, the proposed approach was analyzed for NPCR, UACI (Unified Average Changing Intensity), and Entropy analysis for determining its strength.


1995 ◽  
Vol 32 (2) ◽  
pp. 95-103
Author(s):  
José A. Revilla ◽  
Kalin N. Koev ◽  
Rafael Díaz ◽  
César Álvarez ◽  
Antonio Roldán

One factor in determining the transport capacity of coastal interceptors in Combined Sewer Systems (CSS) is the reduction of Dissolved Oxygen (DO) in coastal waters originating from the overflows. The study of the evolution of DO in coastal zones is complex. The high computational cost of using mathematical models discriminates against the required probabilistic analysis being undertaken. Alternative methods, based on such mathematical modelling, employed in a limited number of cases, are therefore needed. In this paper two alternative methods are presented for the study of oxygen deficit resulting from overflows of CSS. In the first, statistical analyses focus on the causes of the deficit (the volume discharged). The second concentrates on the effects (the concentrations of oxygen in the sea). Both methods have been applied in a study of the coastal interceptor at Pasajes Estuary (Guipúzcoa, Spain) with similar results.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 891
Author(s):  
Aurea Grané ◽  
Alpha A. Sow-Barry

This work provides a procedure with which to construct and visualize profiles, i.e., groups of individuals with similar characteristics, for weighted and mixed data by combining two classical multivariate techniques, multidimensional scaling (MDS) and the k-prototypes clustering algorithm. The well-known drawback of classical MDS in large datasets is circumvented by selecting a small random sample of the dataset, whose individuals are clustered by means of an adapted version of the k-prototypes algorithm and mapped via classical MDS. Gower’s interpolation formula is used to project remaining individuals onto the previous configuration. In all the process, Gower’s distance is used to measure the proximity between individuals. The methodology is illustrated on a real dataset, obtained from the Survey of Health, Ageing and Retirement in Europe (SHARE), which was carried out in 19 countries and represents over 124 million aged individuals in Europe. The performance of the method was evaluated through a simulation study, whose results point out that the new proposal solves the high computational cost of the classical MDS with low error.


Author(s):  
Seyede Vahide Hashemi ◽  
Mahmoud Miri ◽  
Mohsen Rashki ◽  
Sadegh Etedali

This paper aims to carry out sensitivity analyses to study how the effect of each design variable on the performance of self-centering buckling restrained brace (SC-BRB) and the corresponding buckling restrained brace (BRB) without shape memory alloy (SMA) rods. Furthermore, the reliability analyses of BRB and SC-BRB are performed in this study. Considering the high computational cost of the simulation methods, three Meta-models including the Kriging, radial basis function (RBF), and polynomial response surface (PRSM) are utilized to construct the surrogate models. For this aim, the nonlinear dynamic analyses are conducted on both BRB and SC-BRB by using OpenSees software. The results showed that the SMA area, SMA length ratio, and BRB core area have the most effect on the failure probability of SC-BRB. It is concluded that Kriging-based Monte Carlo Simulation (MCS) gives the best performance to estimate the limit state function (LSF) of BRB and SC-BRB in the reliability analysis procedures. Considering the effects of changing the maximum cyclic loading on the failure probability computation and comparison of the failure probability for different LSFs, it is also found that the reliability indices of SC-BRB were always higher than the corresponding reliability indices determined for BRB which confirms the performance superiority of SC-BRB than BRB.


Sign in / Sign up

Export Citation Format

Share Document