ON THE CONTINUITY OF THE RESPONSE MAP AND AN ALTERNATIVE SHOOTING METHOD FOR THE HALF-SPACE GINZBURG–LANDAU MODEL

2006 ◽  
Vol 16 (09) ◽  
pp. 1527-1558
Author(s):  
CATHERINE BOLLEY ◽  
BERNARD HELFFER

As a consequence of a rather complete analysis of the qualitative properties of the solutions of the Ginzburg–Landau equations, we prove, in this paper, both the continuity of a fundamental map σ, called response map in the physical literature on superconductors, and the convergence of an efficient algorithm for the computation of the graph of σ. The response map σ gives the intensity h of the external magnetic field for which the Ginzburg–Landau equations (in a half-space) have a solution such that the parameter order has a prescribed value at the boundary of the sample. Our study involves a shooting method on either one or the other unknown of the system; our algorithm has been introduced in Bolley–Helffer for small values of the Ginzburg–Landau parameter κ and extended in Bolley to any value of κ. Our preceding mathematical studies were not sufficient to prove the convergence, but a recent result (in Ref. 3) on the monotonicity of the solutions with respect to h, combined with a more extensive use of the properties of the solutions of the Ginzburg–Landau system, allow us to complete the proof and to get, as a by-product, the continuity of σ.

1987 ◽  
Vol 101 ◽  
Author(s):  
Z.C. Wu ◽  
Daniel A. Jelski ◽  
Thomas F. George

ABSTRACTThis paper discusses the behavior of currents and fields along a structured superconductor. First the effect of surface structure on supercurrents is investigated. Then the effect of structure on the critical nucleation field is discussed in two cases, one with the magnetic field parallel to the ripples and the other with the field parallel to the grating wavenumber. In the first case, it is found that the critical field is reduced as a function of grating height, whereas in the latter case it is increased. Finally, the relevance of this work for laser-induced chemistry above a superconducting surface is discussed. The Ginzburg-Landau model is used throughout.


In this paper we studied the weakly nonlinear stage of stationary convective instability in a nonuniformly rotating layer of an electrically conductive fluid in an axial uniform magnetic field under the influence of: a) temperature modulation of the layer boundaries; b) gravitational modulation; c) modulation of the magnetic field; d) modulation of the angular velocity of rotation. As a result of applying the method of perturbation theory for the small parameter of supercriticality of the stationary Rayleigh number nonlinear non-autonomous Ginzburg-Landau equations for the above types of modulation were obtaned. By utilizing the solution of the Ginzburg-Landau equation, we determined the dynamics of unsteady heat transfer for various types of modulation of external fields and for different profiles of the angular velocity of the rotation of electrically conductive fluid.


1997 ◽  
Vol 8 (4) ◽  
pp. 331-345 ◽  
Author(s):  
AMANDINE AFTALION

The Ginzburg–Landau model for superconductivity is examined in the one-dimensional case. First, putting the Ginzburg–Landau parameter κ formally equal to infinity, the existence of a minimizer of this reduced Ginzburg–Landau energy is proved. Then asymptotic behaviour for large κ of minimizers of the full Ginzburg–Landau energy is analysed and different convergence results are obtained, according to the exterior magnetic field. Numerical computations illustrate the various behaviours.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Hasnain Mehdi Jafri ◽  
Congpeng Zhao ◽  
Houbing Huang ◽  
Xingqiao Ma

Cubic superconducting sample was simulated using time-dependent Ginzburg-Landau model under oscillating magnetic field with and without additional background static magnetic field. Vortex dynamics including entrance and exit from the sample was simulated. Magnetization and carrier concentration densities of the sample were studied as a function of external magnetic field variations. Anomalies in carrier concentration density were observed at certain values of the magnetic field which were correlated with the entrance and exit processes of vortices. Area swept by superconductor magnetization with magnetic field was observed to have a hysteresis-like behavior where area representing energy dissipated per cycle. This energy accumulation was suggested to cause instability in superconductor over the number of cycles and may result in thermal quenching. Temporal distribution of energy components showed consistency with the pattern observed for carrier concentration and magnetization under oscillating magnetic field. Rapid phase changes with magnetic oscillations resulted in oscillations in energy components, and irregular peaks and ripples in superconducting energy represent the situation of exit and entry of vortices. While the rise in interaction energy with cycles is referred to vortex relaxation time in a cycle, this energy is expected to accumulate and take other forms (e.g., heat) and is predicted to cause thermal quenching. In the presence of background static magnetic field, this energy dissipation was calculated to increase significantly while superconductor is subjected to oscillating magnetic field.


Sign in / Sign up

Export Citation Format

Share Document