scholarly journals SOLUTIONS OF THE YANG-BAXTER EQUATIONS FROM BRAIDED-LIE ALGEBRAS AND BRAIDED GROUPS

1995 ◽  
Vol 04 (04) ◽  
pp. 673-697 ◽  
Author(s):  
SHAHN MAJID

We obtain an R-matrix or matrix representation of the Artin braid group acting in a canonical way on the vector space of every (super)-Lie algebra or braided-Lie algebra. The same result applies for every (super)-Hopf algebra or braided-Hopf algebra. We recover some known representations such as those associated to racks. We also obtain new representations such as a non-trivial one on the ring k[x] of polynomials in one variable, regarded as a braided-line. Representations of the extended Artin braid group for braids in the complement of S1 are also obtained by the same method.

Author(s):  
J.-M. Oudom ◽  
D. Guin

AbstractWe construct an associative product on the symmetric module S(L) of any pre-Lie algebra L. It turns S(L) into a Hopf algebra which is isomorphic to the enveloping algebra of LLie. Then we prove that in the case of rooted trees our construction gives the Grossman-Larson Hopf algebra, which is known to be the dual of the Connes-Kreimer Hopf algebra. We also show that symmetric brace algebras and pre-Lie algebras are the same. Finally, we give a similar interpretation of the Hopf algebra of planar rooted trees.


1959 ◽  
Vol 4 (2) ◽  
pp. 62-72 ◽  
Author(s):  
Hans Zassenhaus

To what extent is the structure of a Lie-algebra L over a field F determined by the bilinear formon L that is derived from a matrix representationof L with finite degree d(Δ) by forming the trace of the matrix productsSuch a bilinear form is a function with two arguments in L, values in F and the properties:


2015 ◽  
Vol 26 (10) ◽  
pp. 1550082
Author(s):  
Weicai Wu ◽  
Shouchuan Zhang ◽  
Yao-Zhong Zhang

We prove (i) Nichols algebra 𝔅(V) of vector space V is finite dimensional if and only if Nichols braided Lie algebra 𝔏(V) is finite dimensional; (ii) if the rank of connected V is 2 and 𝔅(V) is an arithmetic root system, then 𝔅(V) = F ⊕ 𝔏(V); and (iii) if Δ(𝔅(V)) is an arithmetic root system and there does not exist any m-infinity element with puu ≠ 1 for any u ∈ D(V), then dim (𝔅(V)) = ∞ if and only if there exists V′, which is twisting equivalent to V, such that dim (𝔏-(V′)) = ∞. Furthermore, we give an estimation of dimensions of Nichols Lie algebras and two examples of Lie algebras which do not have maximal solvable ideals.


2002 ◽  
Vol 54 (3) ◽  
pp. 595-607
Author(s):  
Nazih Nahlus

AbstractWe extend the basic theory of Lie algebras of affine algebraic groups to the case of pro-affine algebraic groups over an algebraically closed fieldKof characteristic 0. However, some modifications are needed in some extensions. So we introduce the pro-discrete topology on the Lie algebra ℒ(G) of the pro-affine algebraic groupGoverK, which is discrete in the finite-dimensional case and linearly compact in general. As an example, ifLis any sub Lie algebra of ℒ(G), we show that the closure of [L,L] in ℒ(G) is algebraic in ℒ(G).We also discuss the Hopf algebra of representative functions H(L) of a residually finite dimensional Lie algebraL. As an example, we show that ifLis a sub Lie algebra of ℒ(G) andGis connected, then the canonical Hopf algebra morphism fromK[G] intoH(L) is injective if and only ifLis algebraically dense in ℒ(G).


Filomat ◽  
2020 ◽  
Vol 34 (12) ◽  
pp. 3893-3915
Author(s):  
Shengxiang Wang ◽  
Xiaohui Zhang ◽  
Shuangjian Guo

Let (H,?) be a monoidal Hom-Hopf algebra and HH HYD the Hom-Yetter-Drinfeld category over (H,?). Then in this paper, we first introduce the definition of braided Hom-Lie algebras and show that each monoidal Hom-algebra in HH HYD gives rise to a braided Hom-Lie algebra. Second, we prove that if (A,?) is a sum of two H-commutative monoidal Hom-subalgebras, then the commutator Hom-ideal [A,A] of A is nilpotent. Also, we study the central invariant of braided Hom-Lie algebras as a generalization of generalized Lie algebras. Finally, we obtain a construction of the enveloping algebras of braided Hom-Lie algebras and show that the enveloping algebras are H-cocommutative Hom-Hopf algebras.


2007 ◽  
Vol 5 ◽  
pp. 195-200
Author(s):  
A.V. Zhiber ◽  
O.S. Kostrigina

In the paper it is shown that the two-dimensional dynamical system of equations is Darboux integrable if and only if its characteristic Lie algebra is finite-dimensional. The class of systems having a full set of fist and second order integrals is described.


2018 ◽  
Vol 13 (3) ◽  
pp. 59-63 ◽  
Author(s):  
D.T. Siraeva

Equations of hydrodynamic type with the equation of state in the form of pressure separated into a sum of density and entropy functions are considered. Such a system of equations admits a twelve-dimensional Lie algebra. In the case of the equation of state of the general form, the equations of gas dynamics admit an eleven-dimensional Lie algebra. For both Lie algebras the optimal systems of non-similar subalgebras are constructed. In this paper two partially invariant submodels of rank 3 defect 1 are constructed for two-dimensional subalgebras of the twelve-dimensional Lie algebra. The reduction of the constructed submodels to invariant submodels of eleven-dimensional and twelve-dimensional Lie algebras is proved.


Author(s):  
Ruipu Bai ◽  
Shuai Hou ◽  
Yansha Gao

We study the structure of n-Lie algebras with involutive derivations for n≥2. We obtain that a 3-Lie algebra A is a two-dimensional extension of Lie algebras if and only if there is an involutive derivation D on A=A1  ∔  A-1 such that dim A1=2 or dim A-1=2, where A1 and A-1 are subspaces of A with eigenvalues 1 and -1, respectively. We show that there does not exist involutive derivations on nonabelian n-Lie algebras with n=2s for s≥1. We also prove that if A is a (2s+2)-dimensional (2s+1)-Lie algebra with dim A1=r, then there are involutive derivations on A if and only if r is even, or r satisfies 1≤r≤s+2. We discuss also the existence of involutive derivations on (2s+3)-dimensional (2s+1)-Lie algebras.


2005 ◽  
Vol 15 (03) ◽  
pp. 793-801 ◽  
Author(s):  
ANTHONY M. BLOCH ◽  
ARIEH ISERLES

In this paper we develop a theory for analysing the "radius" of the Lie algebra of a matrix Lie group, which is a measure of the size of its commutators. Complete details are given for the Lie algebra 𝔰𝔬(n) of skew symmetric matrices where we prove [Formula: see text], X, Y ∈ 𝔰𝔬(n), for the Frobenius norm. We indicate how these ideas might be extended to other matrix Lie algebras. We discuss why these ideas are of interest in applications such as geometric integration and optimal control.


Sign in / Sign up

Export Citation Format

Share Document