scholarly journals QUARK STARS AND QUANTUM-MAGNETICALLY INDUCED COLLAPSE

2005 ◽  
Vol 14 (11) ◽  
pp. 1959-1969 ◽  
Author(s):  
A. PÉREZ MARTÍNEZ ◽  
H. PÉREZ ROJAS ◽  
H. J. MOSQUERA CUESTA ◽  
M. BOLIGAN ◽  
M. G. ORSARIA

Quark matter is expected to exist in the interior of compact stellar objects as neutron stars or even the more exotic strange stars, based on the Bodmer–Witten conjecture. Bare strange quark stars and (normal) strange quark-matter stars, those possessing a baryon (electron-supported) crust, are hypothesized as good candidates to explain the properties of a set of peculiar stellar sources such as the enigmatic X-ray source RX J1856.5-3754, some pulsars such as PSR B1828-11 and PSR B1642-03, and the anomalous X-ray pulsars and soft γ-ray repeaters. In the MIT bag model, quarks are treated as a degenerate Fermi gas confined to a region of space having a vacuum energy density B bag (the Bag constant). In this note, we modify the MIT bag model by including the electromagnetic interaction. We also show that this version of the MIT model implies the anisotropy of the bag pressure due to the presence of the magnetic field. The equations of state of the degenerate quarks gases are studied in the presence of ultra strong magnetic fields. The behavior of a system made up of quarks having (or not) anomalous magnetic moment is reviewed. A structural instability is found, which is related to the anisotropic nature of the pressures in this highly magnetized matter. The conditions for the collapse of this system are obtained and compared to a previous model of neutron stars that is built on a neutron gas having anomalous magnetic moment.

2003 ◽  
Vol 214 ◽  
pp. 191-198 ◽  
Author(s):  
R. X. Xu

A pedagogical overview of strange quark matter and strange stars is presented. After a historical notation of the research and an introduction to quark matter, a major part is devoted to the physics and astrophysics of strange stars, with attention being paid to the possible ways by which neutron stars and strange stars can be distinguished in astrophysics. Recent possible evidence for bare strange stars is also discussed.


2010 ◽  
Vol 19 (08n10) ◽  
pp. 1511-1519 ◽  
Author(s):  
A. P. MARTÍNEZ ◽  
R. G. FELIPE ◽  
D. M. PARET

We review the stability of magnetized strange quark matter (MSQM) within the phenomenological MIT bag model, taking into account the variation of the relevant input parameters, namely, the strange quark mass, baryon density, magnetic field and bag parameter. A comparison with magnetized asymmetric quark matter in β-equilibrium as well as with strange quark matter (SQM) is presented. We obtain that the energy per baryon for MSQM decreases as the magnetic field increases, and its minimum value at vanishing pressure is lower than the value found for SQM, which implies that MSQM is more stable than non-magnetized SQM. The mass–radius relation for magnetized strange quark stars is also obtained in this framework.


Particles ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 37-44
Author(s):  
Gevorg Hajyan

The integral parameters (mass, radius) of hot proto-quark stars that are formed in supernova explosion are studied. We use the MIT bag model to determine the pressure of up-down and strage quark matter at finite temperature and in the regime where neutrinos are trapped. It is shown that such stars are heated to temperatures of the order of tens of MeV. The maximum possible values of the central temperatures of these stars are determined. It is shown that the energy of neutrinos that are emitted from proto-quark stars is of the order of 250÷300 MeV. Once formed, the proto-quark stars cool by neutrino emission, which leads to a decrease in the mass of these stars by about 0.16–0.25 M⊙ for stars with the rest masses that are in the range Mb=1.22−1.62M⊙.


2000 ◽  
Vol 15 (20) ◽  
pp. 1341-1346 ◽  
Author(s):  
R. SHARMA ◽  
S. MUKHERJEE ◽  
S. D. MAHARAJ

We point out a simple scaling property in the mass–radius relationship in cold compact stars. This property my be considered as a generalization of the scaling observed by Witten for strange quark stars. A particular model which explicitly exhibits this scaling behavior has been discussed. The model is relevant for neutron stars as well as stars made up of exotic matter, in particular, quark stars and other composites based on Bag model calculations.


2005 ◽  
Vol 22 (4) ◽  
pp. 292-297 ◽  
Author(s):  
Debora P. Menezes ◽  
Don B. Melrose

AbstractMotivated by recent suggestions that strange stars can be responsible for glitches and other observational features of pulsars, we review some possible equations of state and their implications for models of neutron, hybrid, and strange stars. We consider the MIT bag model and also strange matter in the colour–flavour locked phase. The central energy densities for strange stars are higher than the central densities of ordinary neutron stars. Strange stars are bound by the strong force and so can also rotate much faster than neutron stars. These results are only weakly dependent on the model used for the quark matter. If just one of the existing mass-to-radius ratio constraint is valid, most neutron stars equations of state are ruled out, but all the strange stars equations of state presented in this work remain consistent with the constraint.


2011 ◽  
Vol 20 (supp02) ◽  
pp. 84-92 ◽  
Author(s):  
AURORA PÉREZ MARTíNEZ ◽  
RICARDO GONZÁLEZ FELIPE ◽  
DARYEL MANREZA PARET

The stability of the color flavor locked phase in the presence of a strong magnetic field is investigated within the phenomenological MIT bag model. It is found that the minimum value of the energy per baryon in a color flavor locked state at vanishing pressure is lower than the corresponding one for unpaired magnetized strange quark matter and, as the magnetic field increases, the energy per baryon decreases. This implies that magnetized color flavor locked matter is more stable and could become the ground state inside neutron stars. The anisotropy of the pressures is discussed. The mass-radius relation for such stars is also studied.


2019 ◽  
Vol 22 (4) ◽  
pp. 311-317
Author(s):  
Hidezumi Terazawa

New forms of matter such as super-hypernuclei (strange quark matter) and superhypernuclear stars (strange quark stars) as candidates for dark matter are discussed in some detail, based on the so-called "Bodmer–Terazawa–Witten hypothesis" assuming that they are stable absolutely or quasi-stable (decaying only weakly).


2002 ◽  
Vol 567 (1) ◽  
pp. L63-L66 ◽  
Author(s):  
Krzysztof Belczynski ◽  
Tomasz Bulik ◽  
Włodzimierz Kluźniak

2012 ◽  
Vol 8 (S291) ◽  
pp. 61-66 ◽  
Author(s):  
Fridolin Weber ◽  
Milva Orsaria ◽  
Hilario Rodrigues ◽  
Shu-Hua Yang

AbstractThis paper gives an brief overview of the structure of hypothetical strange quarks stars (quark stars, for short), which are made of absolutely stable 3-flavor strange quark matter. Such objects can be either bare or enveloped in thin nuclear crusts, which consist of heavy ions immersed in an electron gas. In contrast to neutron stars, the structure of quark stars is determined by two (rather than one) parameters, the central star density and the density at the base of the crust. If bare, quark stars possess ultra-high electric fields on the order of 1018 to 1019 V/cm. These features render the properties of quark stars more multifaceted than those of neutron stars and may allow one to observationally distinguish quark stars from neutron stars.


Sign in / Sign up

Export Citation Format

Share Document