scholarly journals DUALITY INVARIANCE AND COSMOLOGICAL DYNAMICS

2008 ◽  
Vol 17 (12) ◽  
pp. 2229-2254 ◽  
Author(s):  
LUIS P. CHIMENTO ◽  
WINFRIED ZIMDAHL

A duality transformation that interrelates expanding and contracting cosmological models is shown to single out a duality invariant, interacting two-component description of any irrotational, geodesic and shear-free cosmic medium with vanishing three-curvature scalar. We have applied this feature to a system of matter and radiation, to a mixture of dark matter and dark energy, to minimal and conformal scalar fields, and to an enlarged Chaplygin gas model of the cosmic substratum. We have extended the concept of duality transformations to cosmological perturbations and demonstrated the invariance of adiabatic pressure perturbations under these transformations.

2011 ◽  
Vol 20 (13) ◽  
pp. 2543-2558 ◽  
Author(s):  
SAMUEL LEPE ◽  
JAVIER LORCA ◽  
FRANCISCO PEÑA ◽  
YERKO VÁSQUEZ

From a variational action with nonminimal coupling with a scalar field and classical scalar and fermionic interaction, cosmological field equations can be obtained. Imposing a Friedmann–Lemaître–Robertson–Walker (FLRW) metric, the equations lead directly to a cosmological model consisting of two interacting fluids, where the scalar field fluid is interpreted as dark energy and the fermionic field fluid is interpreted as dark matter. Several cases were studied analytically and numerically. An important feature of the non-minimal coupling is that it allows crossing the barrier from a quintessence to phantom behavior. The insensitivity of the solutions to one of the parameters of the model permits it to find an almost analytical solution for the cosmological constant type of universe.


2004 ◽  
Vol 2004 (11) ◽  
pp. 008-008 ◽  
Author(s):  
Neven Bili ◽  
Robert J Lindebaum ◽  
Gary B Tupper ◽  
Raoul D Viollier

2002 ◽  
Vol 535 (1-4) ◽  
pp. 17-21 ◽  
Author(s):  
Neven Bilić ◽  
Gary B Tupper ◽  
Raoul D Viollier

2005 ◽  
Vol 20 (27) ◽  
pp. 2075-2082 ◽  
Author(s):  
L. P. CHIMENTO ◽  
MÓNICA FORTE ◽  
RUTH LAZKOZ

We implement the transition from dark matter to dark energy in k-essence cosmologies for a very large set of kinetic functions F, in a way alternative to recent proposals which use generalized Chaplygin gas and transient models. Here we require that the pressure admits a power-law expansion around some value of the kinetic energy where the pressure vanishes. In addition, for suitable values of the parameters of the model, the speed of sound of the dark matter will be low. We first present the discussion in fairly general terms, and later consider for illustration two examples.


2019 ◽  
Vol 97 (2) ◽  
pp. 117-124 ◽  
Author(s):  
M. Salti ◽  
O. Aydogdu ◽  
A. Tas ◽  
K. Sogut ◽  
E.E. Kangal

We investigate cosmological features of the variable Chaplygin gas (VCG) describing a unified dark matter–energy scenario in a universe governed by the five dimensional (5D) Kaluza–Klein (KK) gravity. In such a proposal, the VCG evolves from the dust-like phase to the phantom or the quintessence phases. It is concluded that the background evolution for the KK-type VCG definition is equivalent to that for the dark energy interacting with the dark matter. Next, after performing neo-classical tests, we calculated the proper, luminosity, and angular diameter distances. Additionally, we construct a connection between the VCG in the KK universe and a homogenous minimally coupled scalar field by introducing its self-interacting potential and also we confirm the stability of the KK-type VCG model by making use of thermodynamics. Moreover, we use data from type Ia supernova, observational H(z) dataset and Planck-2015 results to place constraints on the model parameters. Subsequently, according to the best-fit values of the model parameters we analyze our results numerically.


2019 ◽  
Vol 28 (15) ◽  
pp. 1950170
Author(s):  
Kui Xiao

The evolutionary pictures for phantom field in loop quantum cosmology are discussed in this paper. Comparing the dynamical behaviors of the phantom field with one of the canonical scalar fields in loop quantum cosmology scenario, we found that the [Formula: see text] phase trajectories are the same, but the [Formula: see text] phase-spaces are very different, and the phantom field with considering potentials can drive neither super inflation nor slow-roll inflation in loop quantum cosmology (LQC) scenario. While the universe is filled with multiple dark fluids, to ensure that the condition [Formula: see text] does not violate, the energy density of dark matter [Formula: see text] and the equation-of-state of phantom field [Formula: see text] should satisfy the condition [Formula: see text] at the bounce point. If this constraint condition holds, the universe can enter an inflationary stage, and it is possible to unify the description of phantom field, dark matter and inflation. We introduced a toy model which has the same form of the general Chaplygin gas to unify the dark energy, dark matter and slow-roll inflation, and the slow-roll inflation of the toy model has also been discussed.


2019 ◽  
Vol 623 ◽  
pp. A28
Author(s):  
Hang Li ◽  
Weiqiang Yang ◽  
Liping Gai

The modified Chaplygin gas could be considered to abide by the unified dark fluid model because the model might describe the past decelerating matter dominated era and at present time it provides an accelerating expansion of the Universe. In this paper, we have employed the Planck 2015 cosmic microwave background anisotropy, type-Ia supernovae, observed Hubble parameter data sets to measure the full parameter space of the modified Chaplygin gas as a unified dark matter and dark energy model. The model parameters Bs, α, and B determine the evolutional history of this unified dark fluid model by influencing the energy density ρMCG = ρMCG0[Bs + (1 − Bs)a−3(1 + B)(1 + α)]1/(1 + α). We assumed the pure adiabatic perturbation of unified modified Chaplygin gas in the linear perturbation theory. In the light of Markov chain Monte Carlo method, we find that Bs = 0.727+0.040+0.075−0.039−0.079, α = −0.0156+0.0982+0.2346−0.1380−0.2180, B = 0.0009+0.0018+0.0030−0.0017−0.0030 at 2σ level. The model parameters α and B are very close to zero and the nature of unified dark energy and dark matter model is very similar to cosmological standard model ΛCDM.


2007 ◽  
Vol 04 (02) ◽  
pp. 313-323 ◽  
Author(s):  
MAREK SZYDLOWSKI ◽  
ALEKSANDRA KUREK

We characterize a class of simple FRW models filled by both dark energy and dark matter in notion of a single potential function of the scale factor a(t); t is the cosmological time. It represents the potential of a fictitious particle — Universe moving in 1-dimensional well V(a) which the positional variable mimics the evolution of the Universe. Then the class of all dark energy models (called a multiverse) can be regarded as a Banach space naturally equipped in the structure of the Sobolev metric. In this paper, we explore the notion of C1 metric introduced in the multiverse which measures distance between any two dark energy models. If we choose cold dark matter as a reference, then we can find how far apart are different models offering explanation of the present accelerating expansion phase of the Universe. We consider both models with dark energy (models with the generalized Chaplygin gas, models with variable coefficient equation of state [Formula: see text] parameterized by redshift z, models with phantom matter) as well as models based on some modification of Friedmann equation (Cardassian models, Dvali–Gabadadze–Porrati brane models). We argue that because observational data still favor the ΛCDM model, all reasonable dark energy models should belong to the nearby neighborhood of this model.


2009 ◽  
Vol 18 (11) ◽  
pp. 1741-1748 ◽  
Author(s):  
JIANBO LU ◽  
LIXIN XU

A new diagnostic method, Om, is applied to the generalized Chaplygin gas (GCG) model as the unification of dark matter and dark energy. On the basis of the recently observed data — the Union supernovae, the observational Hubble data, the SDSS baryon acoustic peak and the five-year WMAP shift parameter — we show the discriminations between the GCG model and the ΛCDM model. Furthermore, it is calculated that the current equation of state of dark energy w 0de = -0.964, according to the GCG model.


Sign in / Sign up

Export Citation Format

Share Document