scholarly journals MODIFYING GRAVITY IN THE INFRARED BY IMPOSING AN "ULTRASTRONG" EQUIVALENCE PRINCIPLE

2009 ◽  
Vol 18 (14) ◽  
pp. 2181-2188 ◽  
Author(s):  
FEDERICO PIAZZA

The equivalence principle suggests considering gravity as an infrared phenomenon, whose effects are visible only outside Einstein's free-falling elevator. By curving space–time, general relativity leaves the smallest systems free of classical gravitational effects. However, according to the standard semiclassical treatment, indirect effects of gravity can be experienced inside the elevator through the well-known mechanism of quantum particle production. Here we try a different path than the one historically followed: rather than imposing field quantization on top of a curved manifold, we attempt to upgrade the equivalence principle and extend it to the quantum phenomena. Therefore, we consider, and try to realize in a theoretical framework, a stronger version of the equivalence principle, in which all the effects of gravity are definitely banned from the elevator and confined to the infrared. For this purpose, we introduce infrared modified commutation relations for the global field operators (Fourier modes) that allow us to reabsorb the time-dependent quadratic divergence of the vacuum expectation value of the stress–energy tensor. The proposed modification is effective on length scales comparable to the inverse curvature and, therefore, does not add any dimensional parameter to the theory.

1987 ◽  
Vol 02 (03) ◽  
pp. 713-728 ◽  
Author(s):  
SWEE-PING CHIA

The λϕ4 theory with tachyonic mass is analyzed at T ≠ 0 using an improved one-loop approximation in which each of the bare propagators in the one-loop diagram is replaced by a dressed propagator to take into account the higher loop effects. The dressed propagator is characterized by a temperature-dependent mass which is determined by a self-consistent relation. Renomalization is found to be necessarily temperature-dependent. Real effective potential is obtained, giving rise to real effective mass and real coupling constant. For T < Tc, this is achieved by first shifting the ϕ field by its zero-temperature vacuum expectation value. The effective coupling constant is found to exhibit the striking behavior that it approaches a constant nonzero value as T → ∞.


2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
Junichi Haruna ◽  
Hikaru Kawai

Abstract In the standard model, the weak scale is the only parameter with mass dimensions. This means that the standard model itself cannot explain the origin of the weak scale. On the other hand, from the results of recent accelerator experiments, except for some small corrections, the standard model has increased the possibility of being an effective theory up to the Planck scale. From these facts, it is naturally inferred that the weak scale is determined by some dynamics from the Planck scale. In order to answer this question, we rely on the multiple point criticality principle as a clue and consider the classically conformal $\mathbb{Z}_2\times \mathbb{Z}_2$ invariant two-scalar model as a minimal model in which the weak scale is generated dynamically from the Planck scale. This model contains only two real scalar fields and does not contain any fermions or gauge fields. In this model, due to a Coleman–Weinberg-like mechanism, the one-scalar field spontaneously breaks the $ \mathbb{Z}_2$ symmetry with a vacuum expectation value connected with the cutoff momentum. We investigate this using the one-loop effective potential, renormalization group and large-$N$ limit. We also investigate whether it is possible to reproduce the mass term and vacuum expectation value of the Higgs field by coupling this model with the standard model in the Higgs portal framework. In this case, the one-scalar field that does not break $\mathbb{Z}_2$ can be a candidate for dark matter and have a mass of about several TeV in appropriate parameters. On the other hand, the other scalar field breaks $\mathbb{Z}_2$ and has a mass of several tens of GeV. These results will be verifiable in near-future experiments.


2015 ◽  
Vol 70 (10) ◽  
pp. 867-874 ◽  
Author(s):  
Abdelamelk Boumali

AbstractIn this paper, we investigated the thermodynamics properties of the one-dimensional Duffin–Kemmer–Petiau oscillator by using the Hurwitz zeta function method. In particular, we calculated the following main thermal quantities: the free energy, the total energy, the entropy, and the specific heat. The Hurwitz zeta function allowed us to compute the vacuum expectation value of the energy of our oscillator.


1988 ◽  
Vol 130 ◽  
pp. 565-565
Author(s):  
D. A. Konkowski ◽  
T. M. Helliwell

The space surrounding a long straight cosmic string is flat but conical. The conical topology implies that such a string focuses light rays or particles passing by opposite sides of the string, which can have important astrophysical effects. The flatness, however, implies that the string has no gravitational influence on matter at rest with respect to the string. The flatness is a consequence of the fact that the tension along a cosmic string is equal to its linear mass density μ. There may be physical effects, however, which destroy the equality of tension and mass density, so that straight strings might after all affect matter at rest. One such effect we and others have calculated is the vacuum fluctuations of fields near the strings induced by the conical topology. Such fluctuation s are physically observable but normally small, as in the Casimir effect between parallel plates. We find the vacuum expectation value of the stress - energy tensor of a conformally coupled scalar field around a cosmic string to be in cylindrical coordinates (t, r, θ, z). The equality of Ttt and Tzz means that the effective tension and mass density of the vacuum fluctuations are equal, so that at least in a semiclassical approximation a string dressed by such fields still has no gravitational influence on matter at rest, even though it has a substantial mass density.


1998 ◽  
Vol 13 (10) ◽  
pp. 753-757 ◽  
Author(s):  
ALI AL-NAGHMOUSH ◽  
MURAT ÖZER ◽  
M. O. TAHA

We impose the condition that the eigenvalues of the mass matrix in the shifted Lagrangian density be positive at ϕ=ϕ0, the vacuum expectation value of the scalar field. Using the one-loop effective potential of the standard model, this condition leads to an upper bound on the Higgs boson mass m H :m H <230 GeV, for a top quark mass of 175 GeV.


2015 ◽  
Vol 30 (35) ◽  
pp. 1550213 ◽  
Author(s):  
Davide Fermi ◽  
Livio Pizzocchero

Applying the general framework for local zeta regularization proposed in Part I of this series of papers, we renormalize the vacuum expectation value of the stress-energy tensor (and of the total energy) for a scalar field in presence of an external harmonic potential.


The massless spin-½ and spin-3/2 fields are quantized in the ‘Rindler wedge.’ The vacuum expectation value of the stress-energy tensor is calculated for the spin-½ field and is found to correspond to the absence from the vacuum of black body radiation. Though thermal, the spectrum of the stress tensor has a non-Planckian form.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Andreas Crivellin ◽  
Christoph Greub ◽  
Dario Müller ◽  
Francesco Saturnino

Abstract Leptoquarks are hypothetical new particles, which couple quarks directly to leptons. They experienced a renaissance in recent years as they are prime candidates to explain the so-called flavor anomalies, i.e. the deviations between the Standard Model predictions and measurements in b → sℓ+ℓ− and b → cτν processes and in the anomalous magnetic moment of the muon. At the one-loop level these particles unavoidably generate effects in the purely leptonic processes like Z → ℓ+ℓ−, Z →$$ v\overline{v} $$ v v ¯ , W → ℓν and h → ℓ+ℓ− and can even generate non-zero rates for lepton flavor violating processes such as ℓ → ℓ′γ, Z → ℓ+ℓ′−, h → ℓ+ℓ′− and ℓ → 3ℓ′. In this article we calculate these processes for all five representations of scalar Leptoquarks. We include their most general interaction terms with the Standard Model Higgs boson, which leads to Leptoquark mixing after the former acquires a vacuum expectation value. In our phenomenological analysis we investigate the effects in modified lepton couplings to electroweak gauge bosons, we study the correlations of the anomalous magnetic moment of the muon with h → μ+μ− and Z → μ+μ− as well as the interplay between different lepton flavor violating decays.


1997 ◽  
Vol 06 (04) ◽  
pp. 449-463 ◽  
Author(s):  
M. Bordag ◽  
J. Lindig ◽  
V. M. Mostepanenko ◽  
Yu. V. Pavlov

The vacuum expectation value of the stress–energy tensor of a quantized scalar field with arbitrary curvature coupling in quasi-Euclidean background is calculated. The early time approximation for nonconformal fields is introduced. This approximation makes it possible to represent the matrix elements of the stress–energy tensor as explicit functionals of the scale factor. In the case of scale factors depending on time by the degree law the energy density is calculated explicitly. It is shown that the new contributions due to nonconformal curvature coupling significantly dominate the previously known conformal contributions.


2004 ◽  
Vol 19 (31) ◽  
pp. 5395-5402 ◽  
Author(s):  
ISMAIL TURAN

In this talk, I discuss possible bounds on the Lorentz and CPT violating parameters in the Higgs sector of the so called minimal Standard-Model Extension (SME). The main motivation to this study is coming from the fact that unlike the parameters in the fermion and gauge sector, there are no published bounds on the parameters in the Higgs sector. From the one-loop contributions to the photon propagator the bounds on the CPT-even asymmetric coefficients are obtained and the cμν coefficients in the fermion sector determine the bound on the CPT-even symmetric coefficients. The CPT-odd coefficient is bounded from the non-zero vacuum expectation value of the Z-boson.


Sign in / Sign up

Export Citation Format

Share Document