COSMOLOGY FROM ANISOTROPIC DGP BRANEWORLD

2010 ◽  
Vol 19 (03) ◽  
pp. 233-244
Author(s):  
RIZWAN UL HAQ ANSARI ◽  
P. K. SURESH

We considered an anisotropic brane embedded in a five-dimensional bulk space–time. The Einstein equations and Friedmann equations are obtained. The corresponding Friedmann equations are modified with quadratic corrections to energy density. The anisotropic DGP model also admits a self-accelerating phase in the late universe. The acceleration conditions are obtained and they are consistent with the braneworld scenario. The acceleration condition for DGP model, in the late universe, is dependent on the crossover scale rc.

2021 ◽  
Author(s):  
◽  
Celine Cattoen

<p>Cosmography is the part of cosmology that proceeds by making minimal dynamic assumptions. That is, one does not assume the Friedmann equations (Einstein equations) unless and until absolutely necessary. On the other hand, cosmodynamics is the part of cosmology that relates the geometry to the density and pressure using the Friedmann equations. In both frameworks, we consider the amount of information and the nature of the constraints we can obtain from the Hubble flow in a FLRW universe. Indeed, the cosmological parameters contained in the Hubble relation between distance and redshift provide information on the behaviour of the universe (expansion, acceleration etc...). In the first framework, it is possible to concentrate more directly on the observational situation in a model-independent manner. We perform a number of inter-related cosmographic fits to supernova datasets, and pay particular attention to the extent to which the choice of distance scale and manner of representing the redshift scale affect the cosmological parameters. In the second framework, we use the class of w-parameter models which has become increasingly popular in the last decade. We explore the extent to which a constraint on the w-parameter leads to useful and non-trivial constraints on the Hubble flow in terms of cosmological parameters H(z), density p(z), density parameter O(z), distance scales d(z), and lookback time T(z). On another front, Numerical Relativity has experienced many breakthroughs since 2005, with full inspiral-merger-ringdown simulations now possible. One of the main goals is to provide very accurate templates of gravitational waves for ground-based and space-based interferometers. We explore the potential of a very recent and accurate numerical method, the Spectral Element Method (SEM), for Numerical Relativity, by treating a singular Schwarszchild black hole evolution as a test case. Spectral elements combine the theory of spectral and pseudo-spectral methods for high order polynomials and the variational formulation of finite elements and the associated geometric flexibility. We use the BSSN formulation of the Einstein equations with the method of the moving punctures. After applying the variational formulation to the BSSN system, we present several possible weak forms of this system and its spectral element discretization in space. We use a Runge-Kutta fourth order time discretization. The accuracy of high order methods can deteriorate in the presence of discontinuities or sharp gradients. We show that we can treat the element that contains the puncture with a filtering method to avoid artificial and spurious oscillations. These might form and propagate into the domain coming from discontinuous initial data from the BSSN system.</p>


2021 ◽  
Author(s):  
◽  
Celine Cattoen

<p>Cosmography is the part of cosmology that proceeds by making minimal dynamic assumptions. That is, one does not assume the Friedmann equations (Einstein equations) unless and until absolutely necessary. On the other hand, cosmodynamics is the part of cosmology that relates the geometry to the density and pressure using the Friedmann equations. In both frameworks, we consider the amount of information and the nature of the constraints we can obtain from the Hubble flow in a FLRW universe. Indeed, the cosmological parameters contained in the Hubble relation between distance and redshift provide information on the behaviour of the universe (expansion, acceleration etc...). In the first framework, it is possible to concentrate more directly on the observational situation in a model-independent manner. We perform a number of inter-related cosmographic fits to supernova datasets, and pay particular attention to the extent to which the choice of distance scale and manner of representing the redshift scale affect the cosmological parameters. In the second framework, we use the class of w-parameter models which has become increasingly popular in the last decade. We explore the extent to which a constraint on the w-parameter leads to useful and non-trivial constraints on the Hubble flow in terms of cosmological parameters H(z), density p(z), density parameter O(z), distance scales d(z), and lookback time T(z). On another front, Numerical Relativity has experienced many breakthroughs since 2005, with full inspiral-merger-ringdown simulations now possible. One of the main goals is to provide very accurate templates of gravitational waves for ground-based and space-based interferometers. We explore the potential of a very recent and accurate numerical method, the Spectral Element Method (SEM), for Numerical Relativity, by treating a singular Schwarszchild black hole evolution as a test case. Spectral elements combine the theory of spectral and pseudo-spectral methods for high order polynomials and the variational formulation of finite elements and the associated geometric flexibility. We use the BSSN formulation of the Einstein equations with the method of the moving punctures. After applying the variational formulation to the BSSN system, we present several possible weak forms of this system and its spectral element discretization in space. We use a Runge-Kutta fourth order time discretization. The accuracy of high order methods can deteriorate in the presence of discontinuities or sharp gradients. We show that we can treat the element that contains the puncture with a filtering method to avoid artificial and spurious oscillations. These might form and propagate into the domain coming from discontinuous initial data from the BSSN system.</p>


2008 ◽  
Vol 17 (13n14) ◽  
pp. 2521-2525
Author(s):  
M. GASPERINI

It is explained why the curvature associated with the vacuum energy density arising from SUSY breaking cannot be completely transferred to the extra spatial dimensions of a bulk space–time manifold, and it is shown — without using hierarchy arguments but only the results of current large-scale observations — why the TeV scale should correspond to the maximal allowed SUSY-breaking scale.


2006 ◽  
Vol 03 (01) ◽  
pp. 81-141 ◽  
Author(s):  
PIOTR T. CHRUŚCIEL ◽  
SZYMON ŁȨSKI

The study of Einstein equations leads naturally to Cauchy problems with initial data on hypersurfaces which closely resemble hyperboloids in Minkowski space-time, and with initial data with polyhomogeneous asymptotics, that is, with asymptotic expansions in terms of powers of ln r and inverse powers of r. Such expansions also arise in the conformal method for analysing wave equations in odd space-time dimension. In recent work it has been shown that for non-linear wave equations, or for wave maps, polyhomogeneous initial data lead to solutions which are also polyhomogeneous provided that an infinite hierarchy of corner conditions holds. In this paper we show that the result is true regardless of corner conditions.


1998 ◽  
Vol 13 (38) ◽  
pp. 3069-3072
Author(s):  
L. C. GARCIA DE ANDRADE

Negative energy densities in spinning matter sources of non-Riemannian ultrastatic traversable wormholes require the spin energy density to be higher than the negative pressure or the radial tension. Since the radial tension necessary to support wormholes is higher than the spin density in practice, it seems very unlikely that wormholes supported by torsion may exist in nature. This result corroborates earlier results by Soleng against the construction of the closed time-like curves (CTC) in space–time geometries with spin and torsion. It also agrees with earlier results by Kerlick according to which Einstein–Cartan (EC) gravity torsion sometimes enhance the gravitational collapse instead of avoiding it.


Author(s):  
Deep Bhattacharjee

Chronology unprotected mechanisms are considered with a very low gravitational polarization to make the wormhole traversal with positive energy density everywhere. No need of exotic matter has been considered with the assumption of the Einstein-Dirac-Maxwell Fields, encountering above the non-zero stress-energy-momentum tensor through spacelike hypersurfaces by a hyperbolic coordinate shift.


2018 ◽  
Vol 33 (12) ◽  
pp. 1850061 ◽  
Author(s):  
Ryuichi Nakayama ◽  
Tomotaka Suzuki

We construct a localized state of a scalar field in 3D spin-3 gravity. 3D spin-3 gravity is thought to be holographically dual to [Formula: see text]-extended CFT on a boundary at infinity. It is known that while [Formula: see text] algebra is a nonlinear algebra, in the limit of large central charge [Formula: see text] a linear finite-dimensional subalgebra generated by [Formula: see text] [Formula: see text] and [Formula: see text] [Formula: see text] is singled out. The localized state is constructed in terms of these generators. To write down an equation of motion for a scalar field which is satisfied by this localized state, it is necessary to introduce new variables for an internal space [Formula: see text], [Formula: see text], [Formula: see text], in addition to ordinary coordinates [Formula: see text] and [Formula: see text]. The higher-dimensional space, which combines the bulk space–time with the “internal space,” which is an analog of superspace in supersymmetric theory, is introduced. The “physical bulk space–time” is a 3D hypersurface with constant [Formula: see text], [Formula: see text] and [Formula: see text] embedded in this space. We will work in Poincaré coordinates of AdS space and consider [Formula: see text]-quasi-primary operators [Formula: see text] with a conformal weight [Formula: see text] in the boundary and study two and three point functions of [Formula: see text]-quasi-primary operators transformed as [Formula: see text]. Here, [Formula: see text] and [Formula: see text] are [Formula: see text] generators in the hyperbolic basis for Poincaré coordinates. It is shown that in the [Formula: see text] limit, the conformal weight changes to a new value [Formula: see text]. This may be regarded as a Renormalization Group (RG) flow. It is argued that this RG flow will be triggered by terms [Formula: see text] added to the action.


2016 ◽  
Vol 41 ◽  
pp. 1660127
Author(s):  
Irina Dymnikova ◽  
Anna Dobosz ◽  
Bożena Sołtysek

We present a regular spherically symmetric cosmological model of the Lemaitre class distinguished by the holographic principle as the thermodynamically stable end-point of quantum evaporation of the cosmological horizon. A source term in the Einstein equations connects smoothly two de Sitter vacua with different values of cosmological constant and corresponds to anisotropic vacuum dark fluid defined by symmetry of its stress-energy tensor which is invariant under the radial boosts. Global structure of space-time is the same as for the de Sitter space-time. Cosmological evolution goes from a big initial value of the cosmological constant towards its presently observed value.


Sign in / Sign up

Export Citation Format

Share Document