scholarly journals Planck stars

2014 ◽  
Vol 23 (12) ◽  
pp. 1442026 ◽  
Author(s):  
Carlo Rovelli ◽  
Francesca Vidotto

Quantum-gravitational pressure can stop gravitational collapse and cause a bounce. We observe that: (i) due to the huge time dilation, the process can last micro-seconds in local proper time and billions of years observed from the outside; (ii) the bounce volume can be much larger than planckian, because the onset of quantum-gravity effects is governed by density, not size; (iii) the emerging object can then be bigger than planckian by a factor (m/mP)n, where m is the initial mass, mP is the Planck mass, and n positive; (iv) the interior of an evaporating hole can keep memory of the initial mass, providing an independent scale for the physics of the final explosion. If so, primordial black holes could produce a detectable signal of quantum gravitational origin, which we estimate, under some hypotheses, around the wavelength 10-14 cm.

2002 ◽  
Vol 11 (10) ◽  
pp. 1537-1540 ◽  
Author(s):  
SAMIR D. MATHUR

The entropy and information puzzles arising from black holes cannot be resolved if quantum gravity effects remain confined to a microscopic scale. We use concrete computations in nonperturbative string theory to argue for three kinds of nonlocal effects that operate over macroscopic distances. These effects arise when we make a bound state of a large number of branes, and occur at the correct scale to resolve the paradoxes associated with black holes.


2007 ◽  
Vol 34 (4) ◽  
pp. 767-778 ◽  
Author(s):  
G L Alberghi ◽  
R Casadio ◽  
A Tronconi

Author(s):  
Teruyuki Kitabayashi

We study the effect of the scotogenic dark matter on the primordial black holes (PBHs) and vice versa. We show that if the PBHs evaporate in the radiation dominated era, the upper limit of the initial mass of the PBHs [Formula: see text] should be constrained as [Formula: see text] for [Formula: see text] TeV scotogenic dark matter [Formula: see text] TeV is the most appropriate energy scale in the scotogenic model). On the other hand, if the PBHs evaporate in the PBH dominated era, a quite heavy scotogenic dark matter ([Formula: see text] GeV) for [Formula: see text] may be allowed.


2010 ◽  
Vol 25 (19) ◽  
pp. 1553-1579 ◽  
Author(s):  
XAVIER CALMET

The aim of this paper is to review the recent developments in the phenomenology of quantum gravity at the Large Hadron Collider. We shall pay special attention to four-dimensional models which are able to lower the reduced Planck mass to the TeV region and compare them to models with a large extra-dimensional volume. We then turn our attention to reviewing the emission of gravitons (massless or massive) at the LHC and to the production of small quantum black holes.


2018 ◽  
Vol 27 (16) ◽  
pp. 1930001 ◽  
Author(s):  
Matthew J. Lake ◽  
Bernard Carr

In three spatial dimensions, the Compton wavelength [Formula: see text]) and Schwarzschild radius [Formula: see text]) are dual under the transformation [Formula: see text], where [Formula: see text] is the Planck mass. This suggests that there could be a fundamental link — termed the Black Hole Uncertainty Principle or Compton–Schwarzschild correspondence — between elementary particles with [Formula: see text] and black holes in the [Formula: see text] regime. In the presence of [Formula: see text] extra dimensions, compactified on some scale [Formula: see text] exceeding the Planck length [Formula: see text], one expects [Formula: see text] for [Formula: see text], which breaks this duality. However, it may be restored in some circumstances because the effective Compton wavelength of a particle depends on the form of the [Formula: see text]-dimensional wave function. If this is spherically symmetric, then one still has [Formula: see text], as in the [Formula: see text]-dimensional case. The effective Planck length is then increased and the Planck mass reduced, allowing the possibility of TeV quantum gravity and black hole production at the LHC. However, if the wave function of a particle is asymmetric and has a scale [Formula: see text] in the extra dimensions, then [Formula: see text], so that the duality between [Formula: see text] and [Formula: see text] is preserved. In this case, the effective Planck length is increased even more but the Planck mass is unchanged, so that TeV quantum gravity is precluded and black holes cannot be generated in collider experiments. Nevertheless, the extra dimensions could still have consequences for the detectability of black hole evaporations and the enhancement of pair-production at accelerators on scales below [Formula: see text]. Though phenomenologically general for higher-dimensional theories, our results are shown to be consistent with string theory via the minimum positional uncertainty derived from [Formula: see text]-particle scattering amplitudes.


2017 ◽  
Vol 26 (05) ◽  
pp. 1741018 ◽  
Author(s):  
Muhammad Rizwan ◽  
K. Saifullah

When quantum gravity effects, that are based on generalized uncertainty principle with a minimal measurable length, are incorporated into black hole physics the Klein–Gordon and Dirac equations get modified. Using these modified equations we investigate tunneling of scalar particles and fermions from event and acceleration horizons of accelerating and rotating black holes and obtain the modified Hawking temperature with quantum gravity effects. We see that Hawking temperature depends on black hole parameters as well as the quantum numbers of emitted fermions. The quantum corrections slow down black hole evaporation and leave a black hole remnant. This contradicts complete evaporation of a black hole which is presaged by the standard temperature formula for black holes. The modified Hawking temperatures presented here, in appropriate limits, are consistent with the previous results in the literature.


Sign in / Sign up

Export Citation Format

Share Document