scholarly journals PRIMORDIAL MAGNETIC FIELDS

1998 ◽  
Vol 07 (03) ◽  
pp. 331-349 ◽  
Author(s):  
KARI ENQVIST

The explanation of the observed galactic magnetic fields may require the existence of a primordial magnetic field. Such a field may arise during the early cosmological phase transitions, or because of other particle physics related phenomena in the very early universe reviewed here. The turbulent evolution of the initial, randomly fluctuating microscopic field to a large-scale macroscopic field can be described in terms of a shell model, which provides an approximation to the complete magnetohydrodynamics. The results indicate that there is an inverse cascade of magnetic energy whereby the coherence of the magnetic field is increased by many orders of magnitude. Cosmological seed fields roughly of the order of 10-20 G at the scale of protogalaxy, as required by the dynamo explanation of galactic magnetic fields, thus seem plausible.

2014 ◽  
Vol 10 (S306) ◽  
pp. 159-161 ◽  
Author(s):  
Héctor J. Hortúa ◽  
Leonardo Castañeda

AbstractThe origin of large-scale magnetic fields is an unsolved problem in cosmology. In order to overcome, a possible scenario comes from the idea that these fields emerged from a small primordial magnetic field (PMF), produced in the early universe. This field could lead to the observed large-scales magnetic fields but also, would have left an imprint on the cosmic microwave background (CMB). In this work we summarize some statistical properties of this PMFs on the FLRW background. Then, we show the resulting PMF power spectrum using cosmological perturbation theory and some effects of PMFs on the CMB anisotropies.


2008 ◽  
Vol 4 (S254) ◽  
pp. 95-96
Author(s):  
Arthur M. Wolfe ◽  
Regina A. Jorgenson ◽  
Timothy Robishaw ◽  
Carl Heiles ◽  
Jason X. Prochaska

AbstractThe magnetic field pervading our Galaxy is a crucial constituent of the interstellar medium: it mediates the dynamics of interstellar clouds, the energy density of cosmic rays, and the formation of stars (Beck 2005). The field associated with ionized interstellar gas has been determined through observations of pulsars in our Galaxy. Radio-frequency measurements of pulse dispersion and the rotation of the plane of linear polarization, i.e., Faraday rotation, yield an average value B ≈ 3 μG (Han et al. 2006). The possible detection of Faraday rotation of linearly polarized photons emitted by high-redshift quasars (Kronberg et al. 2008) suggests similar magnetic fields are present in foreground galaxies with redshifts z > 1. As Faraday rotation alone, however, determines neither the magnitude nor the redshift of the magnetic field, the strength of galactic magnetic fields at redshifts z > 0 remains uncertain.Here we report a measurement of a magnetic field of B ≈ 84 μG in a galaxy at z =0.692, using the same Zeeman-splitting technique that revealed an average value of B = 6 μG in the neutral interstellar gas of our Galaxy (Heiles et al. 2004). This is unexpected, as the leading theory of magnetic field generation, the mean-field dynamo model, predicts large-scale magnetic fields to be weaker in the past, rather than stronger (Parker 1970).The full text of this paper was published in Nature (Wolfe et al. 2008).


Data ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 4
Author(s):  
Evgeny Mikhailov ◽  
Daniela Boneva ◽  
Maria Pashentseva

A wide range of astrophysical objects, such as the Sun, galaxies, stars, planets, accretion discs etc., have large-scale magnetic fields. Their generation is often based on the dynamo mechanism, which is connected with joint action of the alpha-effect and differential rotation. They compete with the turbulent diffusion. If the dynamo is intensive enough, the magnetic field grows, else it decays. The magnetic field evolution is described by Steenbeck—Krause—Raedler equations, which are quite difficult to be solved. So, for different objects, specific two-dimensional models are used. As for thin discs (this shape corresponds to galaxies and accretion discs), usually, no-z approximation is used. Some of the partial derivatives are changed by the algebraic expressions, and the solenoidality condition is taken into account as well. The field generation is restricted by the equipartition value and saturates if the field becomes comparable with it. From the point of view of mathematical physics, they can be characterized as stable points of the equations. The field can come to these values monotonously or have oscillations. It depends on the type of the stability of these points, whether it is a node or focus. Here, we study the stability of such points and give examples for astrophysical applications.


2010 ◽  
Vol 2010 ◽  
pp. 1-19 ◽  
Author(s):  
Dai G. Yamazaki ◽  
Kiyotomo Ichiki ◽  
Toshitaka Kajino ◽  
Grant J. Mathews

Magnetic fields are everywhere in nature, and they play an important role in every astronomical environment which involves the formation of plasma and currents. It is natural therefore to suppose that magnetic fields could be present in the turbulent high-temperature environment of the big bang. Such a primordial magnetic field (PMF) would be expected to manifest itself in the cosmic microwave background (CMB) temperature and polarization anisotropies, and also in the formation of large-scale structure. In this paper, we summarize the theoretical framework which we have developed to calculate the PMF power spectrum to high precision. Using this formulation, we summarize calculations of the effects of a PMF which take accurate quantitative account of the time evolution of the cutoff scale. We review the constructed numerical program, which is without approximation, and an improvement over the approach used in a number of previous works for studying the effect of the PMF on the cosmological perturbations. We demonstrate how the PMF is an important cosmological physical process on small scales. We also summarize the current constraints on the PMF amplitudeBλand the power spectral indexnBwhich have been deduced from the available CMB observational data by using our computational framework.


2017 ◽  
Vol 83 (4) ◽  
Author(s):  
Gregory G. Howes ◽  
Sofiane Bourouaine

Plasma turbulence occurs ubiquitously in space and astrophysical plasmas, mediating the nonlinear transfer of energy from large-scale electromagnetic fields and plasma flows to small scales at which the energy may be ultimately converted to plasma heat. But plasma turbulence also generically leads to a tangling of the magnetic field that threads through the plasma. The resulting wander of the magnetic field lines may significantly impact a number of important physical processes, including the propagation of cosmic rays and energetic particles, confinement in magnetic fusion devices and the fundamental processes of turbulence, magnetic reconnection and particle acceleration. The various potential impacts of magnetic field line wander are reviewed in detail, and a number of important theoretical considerations are identified that may influence the development and saturation of magnetic field line wander in astrophysical plasma turbulence. The results of nonlinear gyrokinetic simulations of kinetic Alfvén wave turbulence of sub-ion length scales are evaluated to understand the development and saturation of the turbulent magnetic energy spectrum and of the magnetic field line wander. It is found that turbulent space and astrophysical plasmas are generally expected to contain a stochastic magnetic field due to the tangling of the field by strong plasma turbulence. Future work will explore how the saturated magnetic field line wander varies as a function of the amplitude of the plasma turbulence and the ratio of the thermal to magnetic pressure, known as the plasma beta.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 699-699
Author(s):  
Klaus Dolag ◽  
Alexander M. Beck ◽  
Alexander Arth

AbstractUsing the MHD version of Gadget3 (Stasyszyn, Dolag & Beck 2013) and a model for the seeding of magnetic fields by supernovae (SN), we performed simulations of the evolution of the magnetic fields in galaxy clusters and study their effects on the heat transport within the intra cluster medium (ICM). This mechanism – where SN explosions during the assembly of galaxies provide magnetic seed fields – has been shown to reproduce the magnetic field in Milky Way-like galactic halos (Beck et al. 2013). The build up of the magnetic field at redshifts before z = 5 and the accordingly predicted rotation measure evolution are also in good agreement with current observations. Such magnetic fields present at high redshift are then transported out of the forming protogalaxies into the large-scale structure and pollute the ICM (in a similar fashion to metals transport). Here, complex velocity patterns, driven by the formation process of cosmic structures are further amplifying and distributing the magnetic fields. In galaxy clusters, the magnetic fields therefore get amplified to the observed μG level and produce the observed amplitude of rotation measures of several hundreds of rad/m2. We also demonstrate that heat conduction in such turbulent fields on average is equivalent to a suppression factor around 1/20th of the classical Spitzer value and in contrast to classical, isotropic heat transport leads to temperature structures within the ICM compatible with observations (Arth et al. 2014).


2012 ◽  
Vol 10 (H16) ◽  
pp. 387-387
Author(s):  
S. Nishiyama ◽  
H. Hatano ◽  
T. Nagata ◽  
M. Tamura

AbstractWe present a large-scale view of the magnetic field (MF) in the central 3° × 2° region of our Galaxy. There is a smooth transition of the large-scale MF configuration in this region.


2008 ◽  
Vol 4 (S259) ◽  
pp. 75-80 ◽  
Author(s):  
Roland Kothes ◽  
Jo-Anne Brown

AbstractAs Supernova remnants expand, their shock waves are freezing in and compressing the magnetic field lines they encounter; consequently we can use Supernova remnants as magnifying glasses for their ambient magnetic fields. We will describe a simple model to determine emission, polarization, and rotation measure characteristics of adiabatically expanding Supernova remnants and how we can exploit this model to gain information about the large scale magnetic field in our Galaxy. We will give two examples: The SNR DA530, which is located high above the Galactic plane, reveals information about the magnetic field in the halo of our Galaxy. The SNR G182.4+4.3 is located close to the anti-centre of our Galaxy and reveals the most probable direction where the large-scale magnetic field is perpendicular to the line of sight. This may help to decide on the large-scale magnetic field configuration of our Galaxy. But more observations of SNRs are needed.


2018 ◽  
Vol 611 ◽  
pp. A7 ◽  
Author(s):  
H. Siejkowski ◽  
M. Soida ◽  
K. T. Chyży

Aims. Low-mass galaxies radio observations show in many cases surprisingly high levels of magnetic field. The mass and kinematics of such objects do not favour the development of effective large-scale dynamo action. We attempted to check if the cosmic-ray-driven dynamo can be responsible for measured magnetization in this class of poorly investigated objects. We investigated how starburst events on the whole, as well as when part of the galactic disk, influence the magnetic field evolution. Methods. We created a model of a dwarf/Magellanic-type galaxy described by gravitational potential constituted from two components: the stars and the dark-matter halo. The model is evolved by solving a three-dimensional (3D) magnetohydrodynamic equation with an additional cosmic-ray component, which is approximated as a fluid. The turbulence is generated in the system via supernova explosions manifested by the injection of cosmic-rays. Results. The cosmic-ray-driven dynamo works efficiently enough to amplify the magnetic field even in low-mass dwarf/Magellanic-type galaxies. The e-folding times of magnetic energy growth are 0.50 and 0.25 Gyr for the slow (50 km s−1) and fast (100 km s−1) rotators, respectively. The amplification is being suppressed as the system reaches the equipartition level between kinetic, magnetic, and cosmic-ray energies. An episode of star formation burst amplifies the magnetic field but only for a short time while increased star formation activity holds. We find that a substantial amount of gas is expelled from the galactic disk, and that the starburst events increase the efficiency of this process.


Several recent investigations in geophysics and astrophysics have involved a consideration of the hydrodynamics of a fluid which is a good electrical conductor. In this paper one of the problems which seem likely to arise in such investigations is discussed. The fluid is assumed to be incompressible and in homogeneous turbulent motion, and externally imposed electric and magnetic fields are assumed to be absent. The equations governing the interaction of the electromagnetic field and the turbulent motion are set up with the same assumptions as are used to obtain the Maxwell and current flow equations for a metallic conductor. It is shown that the equation for the magnetic field is identical in form with that for the vorticity in a non-conducting fluid; immediate deductions are that lines of magnetic force move with the fluid when the conductivity is infinite, and that the small-scale components of the turbulence have the more powerful effect on the magnetic field. The first question considered is the stability of a purely hydrodynamical system to small disturbing magnetic fields, and it is shown that the magnetic energy of the disturbance will increase provided the conductivity is greater than a critical value determined by the viscosity of the fluid. The rate of growth of magnetic energy is approximately exponential, with a doubling time which can be simply related to the properties of the turbulence. General mechanical considerations suggest that a steady state is reached when the magnetic field has as much energy as is contained in the small-scale components of the turbulence. Estimates of this amount of energy and of the region of the spectrum in which it will lie are given in terms of observable properties of the turbulence.


Sign in / Sign up

Export Citation Format

Share Document