scholarly journals NEW DEVELOPMENTS IN RELATIVISTIC VISCOUS HYDRODYNAMICS

2010 ◽  
Vol 19 (01) ◽  
pp. 1-53 ◽  
Author(s):  
PAUL ROMATSCHKE

Starting with a brief introduction into the basics of relativistic fluid dynamics, I discuss our current knowledge of a relativistic theory of fluid dynamics in the presence of (mostly shear) viscosity. Derivations based on the generalized second law of thermodynamics, kinetic theory, and a complete second-order gradient expansion are reviewed. The resulting fluid dynamic equations are shown to be consistent for all these derivations, when properly accounting for the respective region of applicability, and can be applied to both weakly and strongly coupled systems. In its modern formulation, relativistic viscous hydrodynamics can directly be solved numerically. This has been useful for the problem of ultrarelativistic heavy-ion collisions, and I will review the setup and results of a hydrodynamic description of experimental data for this case.

2019 ◽  
Vol 23 (6 Part B) ◽  
pp. 4005-4022 ◽  
Author(s):  
Michele Trancossi ◽  
Jose Pascoa

In a recent paper, Liversage and Trancossi have defined a new formulation of drag as a function of the dimensionless Bejan and Reynolds numbers. Further analysis of this hypothesis has permitted to obtain a new dimensionless formulation of the fundamental equations of fluid dynamics in their integral form. The resulting equations have been deeply discussed for the thermodynamic definition of Bejan number evidencing that the proposed formulation allows solving fluid dynamic problems in terms of entropy generation, allowing an effective optimization of design in terms of the Second law of thermodynamics. Some samples are discussed evidencing how the new formulation can support the generation of an optimized configuration of fluidic devices and that the optimized configurations allow minimizing the entropy generation.


2019 ◽  
Vol 11 (3) ◽  
pp. 169-180
Author(s):  
Michele TRANCOSSI ◽  
Jose PASCOA

Two fundamental questions are still open about the complex relation between fluid dynamics and thermodynamics. Is it possible (and convenient) to describe fluid dynamic in terms of second law based thermodynamic equations? Is it possible to solve and manage fluid dynamics problems by mean of second law of thermodynamics? This chapter analyses the problem of the relationships between the laws of fluid dynamics and thermodynamics in both first and second law of thermodynamics in the light of constructal law. In particular, taking into account constructal law and the diffusive formulation of Bejan number, it defines a preliminary step through an extensive thermodynamic vision of fluid dynamic phenomena.


2013 ◽  
Vol 22 (09) ◽  
pp. 1350069 ◽  
Author(s):  
ZHIJIN JIANG ◽  
QINGGUANG LI ◽  
GUANXIANG JIANG

By using the revised Landau hydrodynamic model and taking into account the effect of leading particles, we discuss the pseudorapidity distributions of produced charged particles in high energy heavy-ion collisions. The charged particles resulted from the freeze-out of the matter produced in collisions possess the Gaussian-like rapidity distributions. The leading particles are assumed having the rapidity distributions of the Gaussian form with the normalization constant being equal to the number of participants, which can be figured out in theory. It is found that the results from the revised Landau hydrodynamic model together with the contributions from leading particles are well consistent with the experimental data carried out by BNL-RHIC-PHOBOS Collaboration in different centrality Au + Au collisions at energies of [Formula: see text], 130 and 62.4 GeV , respectively.


Author(s):  
F. E. Ames ◽  
L. A. Dvorak

The objective of this research has been to experimentally investigate the fluid dynamics of pin fin arrays in order to clarify the physics of heat transfer enhancement and uncover problems in conventional turbulence models. The fluid dynamics of a staggered pin fin array have been studied using hot wire anemometry with both single and x-wire probes at array Reynolds numbers of 3000; 10,000; and 30,000. Velocity distributions off the endwall and pin surface have been acquired and analyzed to investigate turbulent transport in pin fin arrays. Well resolved 3-D calculations have been performed using a commercial code with conventional two-equation turbulence models. Predictive comparisons have been made with fluid dynamic data. In early rows where turbulence is low, the strength of shedding increases dramatically with increasing in Reynolds numbers. The laminar velocity profiles off the surface of pins show evidence of unsteady separation in early rows. In row three and beyond laminar boundary layers off pins are quite similar. Velocity profiles off endwalls are strongly affected by the proximity of pins and turbulent transport. At the low Reynolds numbers, the turbulent transport and acceleration keep boundary layers thin. Endwall boundary layers at higher Reynolds numbers exhibit very high levels of skin friction enhancement. Well resolved 3-D steady calculations were made with several two-equation turbulence models and compared with experimental fluid mechanic and heat transfer data. The quality of the predictive comparison was substantially affected by the turbulence model and near wall methodology.


2021 ◽  
Vol 36 (10) ◽  
pp. 2150069
Author(s):  
Abdul Jawad ◽  
Sidra Saleem ◽  
Saba Qummer

We examine thermodynamically an extra driving term for the flat universe by applying Sharma Mittal entropy to Padmanabhan’s holographic equipartition law. Deviations from the Bekenstein–Hawking entropy by using this law, we generate an extra driving in the acceleration equation. By using the constant and parametrized equation of state parameter, we investigate the different cosmological parameters like deceleration parameter, squared speed of sound, Om-diagnostic and statefinder parameter through graphical approach. We observe compatible results with current observational data in both models. Generalized second law of thermodynamics also remains valid in both cases.


Sign in / Sign up

Export Citation Format

Share Document