THE ENERGY AND CENTRALITY DEPENDENCES OF THE PSEUDORAPIDITY DISTRIBUTIONS OF THE CHARGED PARTICLES IN Au+Au COLLISIONS

2012 ◽  
Vol 21 (01) ◽  
pp. 1250002 ◽  
Author(s):  
ZHIJIN JIANG ◽  
YUFEN SUN ◽  
QINGGUANG LI

We present the pseudorapidity distributions of the charged particles in nucleus–nucleus collisions as the function of beam energy and impact parameter through weighted superposition of the pseudorapidity distributions in the effective binary nucleon–nucleon collisions. We then analyze with the theoretical model the experimental measurements carried out by BNL-RHIC-PHOBOS Collaboration in Au + Au collisions at [Formula: see text], 130, 62.4 and 19.6 GeV. The model has only two free parameters and the theoretical results favor the experimental measurements well.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Z. J. Jiang ◽  
H. L. Zhang ◽  
J. Wang ◽  
K. Ma

By taking into account the effects of leading particles, we discuss the pseudorapidity distributions of the charged particles produced in high energy heavy ion collisions in the context of evolution-dominated hydrodynamic model. The leading particles are supposed to have a Gaussian rapidity distribution normalized to the number of participants. A comparison is made between the theoretical results and the experimental measurements performed by BRAHMS and PHOBOS Collaboration at BNL-RHIC in Au-Au and Cu-Cu collisions atsNN=200 GeV and by ALICE Collaboration at CERN-LHC in Pb-Pb collisions atsNN=2.76 TeV.


2013 ◽  
Vol 22 (09) ◽  
pp. 1350069 ◽  
Author(s):  
ZHIJIN JIANG ◽  
QINGGUANG LI ◽  
GUANXIANG JIANG

By using the revised Landau hydrodynamic model and taking into account the effect of leading particles, we discuss the pseudorapidity distributions of produced charged particles in high energy heavy-ion collisions. The charged particles resulted from the freeze-out of the matter produced in collisions possess the Gaussian-like rapidity distributions. The leading particles are assumed having the rapidity distributions of the Gaussian form with the normalization constant being equal to the number of participants, which can be figured out in theory. It is found that the results from the revised Landau hydrodynamic model together with the contributions from leading particles are well consistent with the experimental data carried out by BNL-RHIC-PHOBOS Collaboration in different centrality Au + Au collisions at energies of [Formula: see text], 130 and 62.4 GeV , respectively.


2016 ◽  
Vol 25 (04) ◽  
pp. 1650025 ◽  
Author(s):  
Z. J. Jiang ◽  
J. Wang ◽  
Y. Huang

The charged particles produced in nucleus–nucleus collisions come from leading particles and those frozen out from the hot and dense matter created in collisions. The leading particles are conventionally supposed having Gaussian rapidity distributions normalized to the number of participants. The hot and dense matter is assumed to expand according to the unified hydrodynamics, a hydro model which unifies the features of Landau and Hwa–Bjorken model, and freeze out into charged particles from a time-like hypersurface with a proper time of [Formula: see text]. The rapidity distribution of this part of charged particles can be derived analytically. The combined contribution from both leading particles and unified hydrodynamics is then compared against the experimental data performed by BNL-RHIC-PHOBOS Collaboration in different centrality Cu–Cu collisions at [Formula: see text] and 62.4[Formula: see text]GeV, respectively. The model predictions are consistent with experimental measurements.


2019 ◽  
Vol 28 (03) ◽  
pp. 1950018
Author(s):  
Bushra Ali ◽  
Shaista Khan ◽  
Anuj Chandra ◽  
Shakeel Ahmad

Event-by-event (ebe) fluctuations in mean pseudorapidity values of relativistic charged particles in full phase space are studied by analyzing experimental data on [Formula: see text] collisions at 14.5A, 60A and 200A GeV/c and [Formula: see text] collisions at 200A GeV/c. The findings are compared with the prediction of A Multi-Phase Transport (AMPT) model and those obtained from the analysis of correlation free Monte-Carlo events. Fluctuations in mean pseudorapidity distributions are noted to be in excess to that expected from the statistically independent particle emission. The observed dependence of the fluctuation strength measure parameter, [Formula: see text] on the beam energy and number of participating target nucleons indicate that nucleus–nucleus collisions cannot be treated as simple superposition of multiple nucleon–nucleon interactions. Presence of clusters or jet-like phenomena in multihadron final states are searched for on ebe basis by using the concept of Jaynes Shannon entropy. The findings indicate the presence of cluster-like objects in the experimental data with their size and frequency increasing with increasing beam energy. These observations in turn suggest that the clustering or jet-like algorithm adopted in the present study may be used as a tool for triggering different classes of events.


2014 ◽  
Vol 29 (27) ◽  
pp. 1450130 ◽  
Author(s):  
Z. J. Jiang ◽  
H. L. Zhang

In p–p collisions there are two leading particles, one in the projectile and the other in the target fragmentation region. In this paper we show that, just like in nucleus–nucleus collisions, the revised Landau hydrodynamic model alone does not provide a good enough description of the measured pseudorapidity distributions of charged particles produced in p–p collisions. Only after the leading particles are taken into account can the experimental data be properly matched with the theoretical model in the entire available energy region from [Formula: see text] to 900 GeV.


1971 ◽  
Vol 93 (1) ◽  
pp. 77-84 ◽  
Author(s):  
Nam P. Suh ◽  
C. L. Tsai

The transient thermocouple response characteristics in deflagrating low-conductivity materials with high temperature gradients were investigated theoretically and experimentally. The theoretical model considers the thermocouple bead and lead wires separately, and the two resulting partial differential equations are solved simultaneously by a finite difference technique. The experimental results are obtained by embedding various size thermocouple wires in double-base solid propellants and consequently measuring the temperature profiles and the surface temperatures. The theoretical model is used to predict the experimentally measured temperatures. There is good agreement. The experimentally measured values are smaller than the correct surface temperature, corresponding to the model prediction for zero wire diameter, by at least 20 percent even when 1/2-mil thermocouple wire is used. Both the experimental and theoretical results show a plateau when the thermocouple bead emerges from the solid into the gas phase. The theoretical results also show that there is an optimum ratio of. the thermocouple bead diameter to the wire diameter, which is found to be close to three


2019 ◽  
Vol 28 (10) ◽  
pp. 1950087 ◽  
Author(s):  
S. M. Moosavi Nejad ◽  
A. Armat

Performing a fit procedure on the hyperon masses, we first determine the free parameters in the Cornell-like hypercentral potential between the constituent quarks of hyperons in their ground state. To this end, using the variational principle, we apply the hyperspherical Hamiltonian including the Cornell-like hypercentral potential and the perturbation potentials due to the spin–spin, spin–isospin and isospin–isospin interactions between constituent quarks. In the following, we compute the hyperon magnetic moments as well as radiative decay widths of spin-3/2 hyperons using the spin-flavor wave function of hyperons. Our analysis shows acceptable consistencies between theoretical results and available experimental data. This leads to reliable wave functions for hyperons at their ground state.


2020 ◽  
Vol 29 (08) ◽  
pp. 2050063
Author(s):  
M. Mohery ◽  
E. M. Sultan ◽  
N. N. Abdallah ◽  
M. H. Farghaly

In this work, the interactions of 7Li nuclei with emulsion at 3 A GeV/c were studied. Multiplicity of the charged secondary particles as well as the charge of the outgoing projectile fragments were measured, while correlations among them are discussed. The values of the total charge of the noninteracting projectile nucleons and the average number of interacting projectile nucleons are estimated. The dependence of the secondary particles on the number of heavily-ionized tracks is analyzed. The results show that interactions of 7Li nuclei with emulsion nuclei exhibit a number of regularities, which had been noted in experiments with lighter nuclei. The absorption of relativistic particles, while increasing the degree of target destruction, is observed. The average multiplicities of the secondary charged particles depend on the impact parameter, as their values increase, while decreasing the impact parameter. The number of secondary charged particles in the heavy-ion interactions depends on the degree of disintegration of the target nuclei. This dependence is not observed in the case of the interaction of hadron with emulsion. The experimental data of the interaction of 7Li are systematically compared with the other interactions at different energies. The results agree with the corresponding results at nearly the same energy.


Sign in / Sign up

Export Citation Format

Share Document