NUMERICAL STUDY OF PORE STRUCTURE EFFECTS ON ACOUSTIC LOGGING DATA IN THE BOREHOLE ENVIRONMENT

Fractals ◽  
2020 ◽  
Vol 28 (03) ◽  
pp. 2050049 ◽  
Author(s):  
TIANYANG LI ◽  
ZIZHEN WANG ◽  
NIAN YU ◽  
RUIHE WANG ◽  
YUZHONG WANG

Existing methods of well-logging interpretation often contain errors in the exploration and evaluation of carbonate reservoirs due to the complex pore structures. The differences in frequency ranges and measurement methods deviated between the acoustic well logs and indoor ultrasonic tests cause inconsistent results. Based on the elastic wave equation and the principle of the control variable method, a 2D axisymmetric borehole model with complex pore structures was developed, and the numerical simulation method for acoustic log was constructed. The modeling results show that the power function can well describe the effects of pore structure on the acoustic waves, while the velocity of the Stoneley wave is not sensitive to the pore structure. Crack-like pores with pore aspect ratio (AR) less than 0.1 significantly affect the velocities of P- and S-waves, whereas “spherical” pores have fewer effects. The models with larger pore sizes have high velocities of P- and S-waves. The velocities calculated by the equivalent medium theory are always higher than the numerical simulation results. The velocity deviation caused by the difference in frequency is much smaller than the pore structure. A fractal approach to quantify the effects of pore structures is applied in the acoustic logging data. The fractal dimension increases with the pore AR or size when the porosity is constant, which can be described by a simple power function. This gives us new ideas and methods for pore structure evaluation in the lower frequency range than the conventional petrophysical model.

2021 ◽  
Vol 11 (17) ◽  
pp. 8027
Author(s):  
Yan Lu ◽  
Keyu Liu ◽  
Ya Wang

The Eocene low-permeability sandstone reservoirs in the Dongying Depression, Bohai Bay Basin, China host a significant amount of oil reserves. The development of the reservoirs has been hampered by our inability to understand the complex and heterogeneous pore structures of the reservoirs. In this study, the pore systems, pore sizes, pore connectivity, and movable fluid distribution of the Eocene Shahejie Formation (Es4) sandstone reservoirs were investigated using an integrated analysis of optical and scanning electron microscopy (SEM), mercury injection capillary pressure (MICP), and nuclear magnetic resonance (NMR). The full-range pore structures of the Es4 sandstone reservoirs were evaluated by using NMR experiments. Various NMR T2 spectral parameters suitable for describing the pore structures and movable fluid distribution were extracted through morphological and statistical analysis of NMR T2 spectra. In combination with corresponding MICP data and petrophysical properties, we have demonstrated the reliability and robustness of the T2 spectral parameters for pore structure characterization. Four types of pore structures (I, II, III, and IV) were distinguished from the NMR T2 spectral parameters in association with other petrophysical properties and macroscopic behaviors. We have demonstrated the effectiveness of using the NMR T2 spectral parameters to characterize and classify micropore structures, which may be applied to effectively evaluate and predict low-permeability reservoir quality.


2020 ◽  
Vol 9 (1) ◽  
pp. 27
Author(s):  
Hitoshi Tanaka ◽  
Nguyen Xuan Tinh ◽  
Xiping Yu ◽  
Guangwei Liu

A theoretical and numerical study is carried out to investigate the transformation of the wave boundary layer from non-depth-limited (wave-like boundary layer) to depth-limited one (current-like boundary layer) over a smooth bottom. A long period of wave motion is not sufficient to induce depth-limited properties, although it has simply been assumed in various situations under long waves, such as tsunami and tidal currents. Four criteria are obtained theoretically for recognizing the inception of the depth-limited condition under waves. To validate the theoretical criteria, numerical simulation results using a turbulence model as well as laboratory experiment data are employed. In addition, typical field situations induced by tidal motion and tsunami are discussed to show the usefulness of the proposed criteria.


2013 ◽  
Vol 444-445 ◽  
pp. 1574-1578 ◽  
Author(s):  
Hua Hua Xiao ◽  
Zhan Li Mao ◽  
Wei Guang An ◽  
Qing Song Wang ◽  
Jin Hua Sun

A numerical study of premixed propane/air flame propagation in a closed duct is presented. A dynamically thickened flame (TF) method is applied to model the premixed combustion. The reaction of propane in air is taken into account using a single-step global Arrhenius kinetics. It is shown that the premixed flame undergoes four stages of dynamics in the propagation. The formation of tulip flame phenomenon is observed. The pressure during the combustion process grows exponentially at the finger-shape flame stage and then slows down until the formation of tulip shape. After tulip formation the pressure increases quickly again with the increase of the flame surface area. The vortex motion behind the flame front advects the flame into tulip shape. The study indicates that the TF model is quite reliable for the investigation of premixed propane/air flame propagation.


1989 ◽  
Vol 209 ◽  
pp. 285-308 ◽  
Author(s):  
R. J. Bodonyi ◽  
W. J. C. Welch ◽  
P. W. Duck ◽  
M. Tadjfar

A numerical study of the generation of Tollmien-Schlichting (T–S) waves due to the interaction between a small free-stream disturbance and a small localized variation of the surface geometry has been carried out using both finite–difference and spectral methods. The nonlinear steady flow is of the viscous–inviscid interactive type while the unsteady disturbed flow is assumed to be governed by the Navier–Stokes equations linearized about this flow. Numerical solutions illustrate the growth or decay of the T–S waves generated by the interaction between the free-stream disturbance and the surface distortion, depending on the value of the scaled Strouhal number. An important result of this receptivity problem is the numerical determination of the amplitude of the T–S waves.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
John B. Lowe ◽  
Richard T. Baker

Ordered mesoporous silica materials are of interest for a wide range of applications. In many of these, elevated temperatures are used either in the preparation of the material or during its use. Therefore, an understanding of the effect of high temperature treatments on these materials is desirable. In this work, a detailed structural study is performed on silicas with three representative pore structures: a 2-D hexagonal pore arrangement (SBA-15), a continuous 3D cubic bimodal pore structure (KIT-6), and a 3D large cage pore structure (FDU-12). Each silica is studied as prepared and after treatment at a series of temperatures between 300 and 900°C. Pore structures are imaged using Transmission Electron Microscopy. This technique is used in conjunction with Small-Angle X-ray Diffraction, gas physisorption, and29Si solid state Nuclear Magnetic Resonance. Using these techniques, the pore size distributions, the unit cell dimensions of the mesoporous structures, and the relative occupancy of the distinct chemical environments of Si within them are cross correlated for the three silicas and their evolution with treatment temperature is elucidated. The physical and chemical properties before, during, and after collapse of these structures at high temperatures are described as are the differences in behavior between the three silica structures.


2014 ◽  
Vol 1712 ◽  
Author(s):  
Seyoon Yoon ◽  
Isabel Galan ◽  
Kemal Celik ◽  
Fredrik P. Glasser ◽  
Mohammed S. Imbabi

ABSTRACTCalcium sulfoaluminate (CSA) cements are being developed using a novel processing method having as its objective lowering specific CO2 emissions by ∼50% relative to a Portland cement benchmark. We need to be able to measure the properties of the products. Porosity and permeability measurements help define the engineering properties but their quantification is influenced by the choice of experimental protocols. In the present study we used ordinary Portland cement (PC) paste as a benchmark and hydrated ye’elimite, which is a main component of CSA cements, to understand its pore structure. We report on the use of synchrotron-sourced radiation for µCT (Computerized Tomography) and 3D image re-construction of the internal micro-pore structure of PC and ye’elimite-gypsum pastes. As a comparison, porosity and permeability measurements were traditionally obtained using Mercury Intrusion Porosimetry (MIP). The Mori-Tanaka method and the polynomial statistical model were used to analyze the effects of different 3-D micro-pore structures on mechanical properties. The results show that e micro-pore structures differ considerably between PC and ye’elimite pastes and their bulk modulus is significantly affected by the shapes of their micro-pore structures.


Sign in / Sign up

Export Citation Format

Share Document