EXPERIMENTAL INVESTIGATION ON MULTI-FRACTAL CHARACTERISTICS OF ACOUSTIC EMISSION OF COAL SAMPLES SUBJECTED TO TRUE TRIAXIAL LOADING–UNLOADING

Fractals ◽  
2020 ◽  
Vol 28 (05) ◽  
pp. 2050092 ◽  
Author(s):  
RAN ZHANG ◽  
JIE LIU ◽  
ZHANYOU SA ◽  
ZAIQUAN WANG ◽  
SHOUQING LU ◽  
...  

Coal–rock dynamic disasters seriously threaten safe production in coal mines, and an effective early warning is especially important to reduce the losses caused by these disasters. The occurrence of coal–rock dynamic disasters is determined by mining-induced stress loading and unloading. Therefore, it is of great significance to analyze the precursory information of coal deformation and failure during true triaxial stress loading and unloading. In this study, the deformation and failure of coal samples subjected to true triaxial loading and unloading, including fixed axial stress and unloading confining stress (FASUCS), are experimentally investigated. Meanwhile, acoustic emission (AE) during the deformation of coal samples is monitored, and the multi-fractal characteristics of AE are analyzed. Furthermore, combined with the deformation and failure of coal samples, the precursory information of coal deformation and rupture during true triaxial stress loading and unloading is obtained. Finally, the relationship between multi-fractal characteristics and damage evolution of coal samples under FASUCS is discussed. The results show that the multi-fractal spectral widths of AE time series under the conditions of FASUCS with different initial confining stresses or unloading rates are quite different, but the dynamic changes of multi-fractal parameters [Formula: see text] and [Formula: see text] are similar. This indicates that the microscopic complexity of AE events of coal samples under different conditions of FASUCS differs, but the macroscopic generation mechanism of AE events has inherent uniformity. The dynamic changes of [Formula: see text] and [Formula: see text] can reflect the stress and damage degree of coal samples. The dynamic change process of [Formula: see text] well accords with the damage evolution process of coal samples. A gradual decrease of [Formula: see text] corresponds to a slow increase of damage, while a sharp increase of it corresponds to a rapid growth of damage. At the same time, the mutation point of damage curve at distinct stress difference levels shares the same variation trend with the [Formula: see text] mutation point. The change of [Formula: see text] can reflect the damage process of coal samples, which can be used as precursor information for predicting coal–rock rupture. The finding is of great significance for the early warning of coal–rock dynamic disasters.

2014 ◽  
Vol 14 (8) ◽  
pp. 2089-2103 ◽  
Author(s):  
S. Hu ◽  
E. Wang ◽  
X. Liu

Abstract. Dynamic collapses of deeply mined coal rocks are severe threats to miners; in order to predict collapses more accurately using electromagnetic radiation (EMR), we investigate the spatiotemporal multifractal characteristics and formation mechanism of EMR induced by underground coal mining. Coal rock in the burst-prone zone often exchanges materials (gas, water and coal) and energy with its environment and gradually transitions from its original stable equilibrium structure to a nonequilibrium dissipative structure with implicit spatiotemporal complexity or multifractal structures, resulting in temporal variation in multifractal EMR. The inherent law of EMR time series during damage evolution was analyzed by using time-varying multifractal theory. Results show that the time-varying multifractal characteristics of EMR are determined by damage evolution processes. Moreover, the dissipated energy caused by the damage evolutions, such as crack propagation, fractal sliding and shearing, can be regarded as the fingerprint of various EMR micro-mechanics. The dynamic spatiotemporal multifractal spectrum of EMR considers both spatial (multiple fractures) and temporal (dynamic evolution) characteristics of coal rocks and records the dynamic evolution processes of rock bursts. Thus, it can be used to evaluate the coal deformation and fracture process. The study is of significance for us to understand the EMR mechanism in detail and to increase the accuracy of the EMR method in forecasting dynamic disasters.


2020 ◽  
Vol 53 (9) ◽  
pp. 4117-4138 ◽  
Author(s):  
Jun Lu ◽  
Gun Huang ◽  
Heng Gao ◽  
Xing Li ◽  
Dongming Zhang ◽  
...  

2021 ◽  
Vol 13 (23) ◽  
pp. 13280
Author(s):  
Hai Wu ◽  
Qian Jia ◽  
Weijun Wang ◽  
Nong Zhong ◽  
Yiming Zhao

Taking a deep-mine horizontal roadway in inclined strata as our research object, the true triaxial simulation technique was used to establish a model of the inclined strata and carry out high-stress triaxial loading experiments. The experimental results show that the deformation of surrounding rock in the roadway presents heterogeneous deformation characteristics in time and space: the deformation of the surrounding rock at different positions of the roadway occurs at different times. In the process of deformation of the surrounding rock, deformation and failure occur at the floor of the roadway first, followed by the lower shoulder-angle of the roadway, and finally the rest of the roadway. The deformation amount in the various areas is different. The floor heave deformation of the roadway floor is the greatest and shows obvious left-right asymmetry. The deformation of the higher side is greater than that of the lower side. The model disassembly shows that the development of cracks in the surrounding rock is characterized by more cracks on the higher side and fewer cracks on the lower side but shows larger cracks across the width. The experimental results of high-stress deformation of the surrounding rock are helpful in the design of supports, the reinforcement scheme, and the parameter optimization of roadways in high-stress-inclined rock, and to improve the stability control of deep high-stress roadways.


Sign in / Sign up

Export Citation Format

Share Document