FPGA REALIZATION OF COMPLEX LOGISTIC MAP FRACTAL BEHAVIOR

Fractals ◽  
2021 ◽  
Author(s):  
BAHAA-ALDEEN M. ABO-ALNAGA ◽  
LOBNA A. SAID ◽  
AHMED H. MADIAN ◽  
AHMED G. RADWAN

This paper studies the capability of digital architecture to mimic fractal behavior. As chaotic attractors realized digitally had opened many tracks, digital designs mimicking fractals may ultimately achieve the same. This study is based on a complex single-dimensional discrete chaotic system known as the generalized positive logistic map. The fractals realized from this system are linked to the results of the mathematical analysis to understand the fractal behavior with different variations. A digital hardware architecture manifesting the fractal behavior is achieved on FPGA, showing a fractal entity experimentally. With this digital realization, it is hoped that fractals can follow the example of chaotic attractors digital applications.

Inventions ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 49
Author(s):  
Zain-Aldeen S. A. Rahman ◽  
Basil H. Jasim ◽  
Yasir I. A. Al-Yasir ◽  
Raed A. Abd-Alhameed ◽  
Bilal Naji Alhasnawi

In this paper, a new fractional order chaotic system without equilibrium is proposed, analytically and numerically investigated, and numerically and experimentally tested. The analytical and numerical investigations were used to describe the system’s dynamical behaviors including the system equilibria, the chaotic attractors, the bifurcation diagrams, and the Lyapunov exponents. Based on the obtained dynamical behaviors, the system can excite hidden chaotic attractors since it has no equilibrium. Then, a synchronization mechanism based on the adaptive control theory was developed between two identical new systems (master and slave). The adaptive control laws are derived based on synchronization error dynamics of the state variables for the master and slave. Consequently, the update laws of the slave parameters are obtained, where the slave parameters are assumed to be uncertain and are estimated corresponding to the master parameters by the synchronization process. Furthermore, Arduino Due boards were used to implement the proposed system in order to demonstrate its practicality in real-world applications. The simulation experimental results were obtained by MATLAB and the Arduino Due boards, respectively, with a good consistency between the simulation results and the experimental results, indicating that the new fractional order chaotic system is capable of being employed in real-world applications.


2019 ◽  
Vol 29 (08) ◽  
pp. 1950112 ◽  
Author(s):  
Erivelton G. Nepomuceno ◽  
Priscila F. S. Guedes ◽  
Alípio M. Barbosa ◽  
Matjaž Perc ◽  
Robert Repnik

Soft computing strategies are drawing widespread interest in engineering and science fields, particularly so because of their capacity to reason and learn in a domain of inherent uncertainty, approximation, and unpredictability. However, soft computing research devoted to finite precision effects in chaotic system simulations is still in a nascent stage, and there are ample opportunities for new discoveries. In this paper, we consider the error that is due to finite precision in the simulation of chaotic systems. We present a generalized version of the lower bound error using an arbitrary number of natural interval extensions. The lower bound error has been used to simulate a chaotic system with lower and upper bounds. The width of this interval does not diverge, which is an advantage compared to other techniques. We illustrate our approach on three systems, namely the logistic map, the Singer map and the Chua circuit. Moreover, we validate the method by calculating the largest Lyapunov exponent.


2021 ◽  
Vol 146 ◽  
pp. 110773
Author(s):  
Dengwei Yan ◽  
Lidan Wang ◽  
Shukai Duan ◽  
Jiaojiao Chen ◽  
Jiahao Chen

2016 ◽  
Vol 2016 ◽  
pp. 1-13
Author(s):  
Wenyuan Duan ◽  
Heyuan Wang ◽  
Meng Kan

The dynamic behavior of a chaotic system in the internal wave dynamics and the problem of the tracing and synchronization are investigated, and the numerical simulation is carried out in this paper. The globally exponentially attractive set and positive invariant set of the chaotic system are studied via constructing the positive definite and radial unbounded Lyapunov function. There are no equilibrium positions, periodic solutions, quasi-period motions, wandering recovering motions, and other chaotic attractors of the system out of the globally exponentially attractive set. Strange attractors can only locate in the globally exponentially attractive set. A feedback controller is designed for the chaotic system to realize the control of the unstable point. The second method of Lyapunov is used to discuss theoretically the rationality of the design of the controller. The driving-response synchronization method is used to realize the globally exponential synchronization. The numerical simulation is carried out by MATLAB software, and the simulation results show that the method is effective.


2004 ◽  
Vol 14 (05) ◽  
pp. 1507-1537 ◽  
Author(s):  
JINHU LÜ ◽  
GUANRONG CHEN ◽  
DAIZHAN CHENG

This article introduces a new chaotic system of three-dimensional quadratic autonomous ordinary differential equations, which can display (i) two 1-scroll chaotic attractors simultaneously, with only three equilibria, and (ii) two 2-scroll chaotic attractors simultaneously, with five equilibria. Several issues such as some basic dynamical behaviors, routes to chaos, bifurcations, periodic windows, and the compound structure of the new chaotic system are then investigated, either analytically or numerically. Of particular interest is the fact that this chaotic system can generate a complex 4-scroll chaotic attractor or confine two attractors to a 2-scroll chaotic attractor under the control of a simple constant input. Furthermore, the concept of generalized Lorenz system is extended to a new class of generalized Lorenz-like systems in a canonical form. Finally, the important problems of classification and normal form of three-dimensional quadratic autonomous chaotic systems are formulated and discussed.


Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2145
Author(s):  
Pengfei Ding ◽  
Xiaoyi Feng ◽  
Lin Fa

A three directional (3-D) multi-scroll chaotic attractors based on the Jerk system with nonlinearity of the sine function and sign function is introduced in this paper. The scrolls in the X-direction are generated by the sine function, which is a modified sine function (MSF). In addition, the scrolls in Y and Z directions are generated by the sign function series, which are the superposition of some sign functions with different time-shift values. In the X-direction, the scroll number is adjusted by changing the comparative voltages of the MSF, and the ones in Y and Z directions are regulated by the sign function. The basic dynamics of Lyapunov exponent spectrum, phase diagrams, bifurcation diagram and equilibrium points distribution were studied. Furthermore, the circuits of the chaotic system are designed by Multisim10, and the circuit simulation results indicate the feasibility of the proposed chaotic system for generating chaotic attractors. On the basis of the circuit simulations, the hardware circuits of the system are designed for experimental verification. The experimental results match with the circuit simulation results, this powerfully proves the correctness and feasibility of the proposed system for generating 3-D grid multi-scroll chaotic attractors.


Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 842
Author(s):  
Pengfei Ding ◽  
Xiaoyi Feng

A novel chaotic system for generating multi-scroll attractors based on a Jerk circuit using a special form of a sine function (SFSF) is proposed in this paper, and the SFSF is the product of a sine function and a sign function. Although there are infinite equilibrium points in this system, the scroll number of the generated chaotic attractors is certain under appropriate system parameters. The dynamical properties of the proposed chaotic system are studied through Lyapunov exponents, phase portraits, and bifurcation diagrams. It is found that the scroll number of the chaotic system in the left and right part of the x-y plane can be determined arbitrarily by adjusting the values of the parameters in the SFSF, and the size of attractors is dominated by the frequency of the SFSF. Finally, an electronic circuit of the proposed chaotic system is implemented on Pspice, and the simulation results of electronic circuit are in agreement with the numerical ones.


Entropy ◽  
2018 ◽  
Vol 20 (8) ◽  
pp. 564 ◽  
Author(s):  
Jesus Munoz-Pacheco ◽  
Ernesto Zambrano-Serrano ◽  
Christos Volos ◽  
Sajad Jafari ◽  
Jacques Kengne ◽  
...  

In this work, a new fractional-order chaotic system with a single parameter and four nonlinearities is introduced. One striking feature is that by varying the system parameter, the fractional-order system generates several complex dynamics: self-excited attractors, hidden attractors, and the coexistence of hidden attractors. In the family of self-excited chaotic attractors, the system has four spiral-saddle-type equilibrium points, or two nonhyperbolic equilibria. Besides, for a certain value of the parameter, a fractional-order no-equilibrium system is obtained. This no-equilibrium system presents a hidden chaotic attractor with a `hurricane’-like shape in the phase space. Multistability is also observed, since a hidden chaotic attractor coexists with a periodic one. The chaos generation in the new fractional-order system is demonstrated by the Lyapunov exponents method and equilibrium stability. Moreover, the complexity of the self-excited and hidden chaotic attractors is analyzed by computing their spectral entropy and Brownian-like motions. Finally, a pseudo-random number generator is designed using the hidden dynamics.


Author(s):  
Assia Merzoug ◽  
Adda Ali-Pacha ◽  
Naima Hadj-Said

<p>At least during the last five years there has been an explosion of a public academic research in cryptography for Playfair's cipher. We were interested, and we have proposed a method to improve it, to make it safer and more efficient. We have oversized this encryption matrix by 7x7 coefficents and for its filling, we have combined two chaotic maps (the attractor Henon and logistics map). The attractor Henon of dimension 2, determines the intersection of the row and column of the new matrix playfair. The coefficients of this matrix are calculated from logistic map, each value is a single character of the alphabet used. The secret keyword is formed by the initial conditions of the chaotic attractors.</p>


Sign in / Sign up

Export Citation Format

Share Document