New Approach of the Playfair's Cipher with A Numerical Value of the Keyword

Author(s):  
Assia Merzoug ◽  
Adda Ali-Pacha ◽  
Naima Hadj-Said

<p>At least during the last five years there has been an explosion of a public academic research in cryptography for Playfair's cipher. We were interested, and we have proposed a method to improve it, to make it safer and more efficient. We have oversized this encryption matrix by 7x7 coefficents and for its filling, we have combined two chaotic maps (the attractor Henon and logistics map). The attractor Henon of dimension 2, determines the intersection of the row and column of the new matrix playfair. The coefficients of this matrix are calculated from logistic map, each value is a single character of the alphabet used. The secret keyword is formed by the initial conditions of the chaotic attractors.</p>

Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1313
Author(s):  
Wenhao Yan ◽  
Qun Ding

In this paper, a method to enhance the dynamic characteristics of one-dimension (1D) chaotic maps is first presented. Linear combinations and nonlinear transform based on existing chaotic systems (LNECS) are introduced. Then, a numerical chaotic map (LCLS), based on Logistic map and Sine map, is given. Through the analysis of a bifurcation diagram, Lyapunov exponent (LE), and Sample entropy (SE), we can see that CLS has overcome the shortcomings of a low-dimensional chaotic system and can be used in the field of cryptology. In addition, the construction of eight functions is designed to obtain an S-box. Finally, five security criteria of the S-box are shown, which indicate the S-box based on the proposed in this paper has strong encryption characteristics. The research of this paper is helpful for the development of cryptography study such as dynamic construction methods based on chaotic systems.


2001 ◽  
Vol 08 (02) ◽  
pp. 137-146 ◽  
Author(s):  
Janusz Szczepański ◽  
Zbigniew Kotulski

Pseudorandom number generators are used in many areas of contemporary technology such as modern communication systems and engineering applications. In recent years a new approach to secure transmission of information based on the application of the theory of chaotic dynamical systems has been developed. In this paper we present a method of generating pseudorandom numbers applying discrete chaotic dynamical systems. The idea of construction of chaotic pseudorandom number generators (CPRNG) intrinsically exploits the property of extreme sensitivity of trajectories to small changes of initial conditions, since the generated bits are associated with trajectories in an appropriate way. To ensure good statistical properties of the CPRBG (which determine its quality) we assume that the dynamical systems used are also ergodic or preferably mixing. Finally, since chaotic systems often appear in realistic physical situations, we suggest a physical model of CPRNG.


2018 ◽  
Vol 31 (20) ◽  
pp. 8573-8588 ◽  
Author(s):  
Matz A. Haugen ◽  
Michael L. Stein ◽  
Elisabeth J. Moyer ◽  
Ryan L. Sriver

Understanding future changes in extreme temperature events in a transient climate is inherently challenging. A single model simulation is generally insufficient to characterize the statistical properties of the evolving climate, but ensembles of repeated simulations with different initial conditions greatly expand the amount of data available. We present here a new approach for using ensembles to characterize changes in temperature distributions based on quantile regression that more flexibly characterizes seasonal changes. Specifically, our approach uses a continuous representation of seasonality rather than breaking the dataset into seasonal blocks; that is, we assume that temperature distributions evolve smoothly both day to day over an annual cycle and year to year over longer secular trends. To demonstrate our method’s utility, we analyze an ensemble of 50 simulations of the Community Earth System Model (CESM) under a scenario of increasing radiative forcing to 2100, focusing on North America. As previous studies have found, we see that daily temperature bulk variability generally decreases in wintertime in the continental mid- and high latitudes (>40°). A more subtle result that our approach uncovers is that differences in two low quantiles of wintertime temperatures do not shrink as much as the rest of the temperature distribution, producing a more negative skew in the overall distribution. Although the examples above concern temperature only, the technique is sufficiently general that it can be used to generate precise estimates of distributional changes in a broad range of climate variables by exploiting the power of ensembles.


2021 ◽  
pp. 240-248
Author(s):  
Mahmood Khalel Ibrahem ◽  
Hussein Ali Kassim

Recently, with the development multimedia technologies and wireless telecommunication, Voice over Internet Protocol, becomes widely used in communication between connecting people, VoIP allows people that are connected to the local network or the Internet to make voice calls using digital connection instead of based on the analog traditional telephone network. The technologies of Internet doesn’t give any security mechanism and there is no way to guarntee that the voice streams will be transmitted over Internet or network have not been intercepted in between. In this paper, VoIP is developed using stream cipher algorithm and the chaotic cryptography for key generator. It is based on the chaotic maps for generating a one-time random key used to encrypt each voice data in the RTP packet. Chaotic maps have been used successfully for encryption bulky data such as voice, image, and video, chaotic cryptography has good properties such as long periodicity, pseudo-randomness, and sensitivity to initial conditions and change in system parameters. A VoIP system was successfully implemented based on the on ITU-T G.729 for voice codec, as a multimedia encoding of Real-time Transport Protocol payload data, then, apply a proposed method to generate three-mixed logistic chaotic maps [1] and then analysis the encryption/ decryption quality measures for speech signal based this method. The experimental work demonstrates that the proposed scheme can provide confidentiality to voice data with voice over IP performance quality, minimum lost in transmitted packet, minimum average delay, and minimum jitter.


2021 ◽  
Vol 10 (2) ◽  
pp. 11
Author(s):  
Yasir Ahmed Hamza ◽  
Marwan Dahar Omer

In this study, a new approach of image encryption has been proposed. This method is depends on the symmetric encryption algorithm RC4 and Rossler chaotic system. Firstly, the encryption key is employed to ciphering a plain image using RC4 and obtains a ciphered-image. Then, the same key is used to generate the initial conditions of the Rossler system. The system parameters and the initial conditions are used as the inputs for Rossler chaotic system to generate the 2-dimensional array of random values. The resulted array is XORed with the ciphered-image to obtain the final encrypted-image. Based on the experimental results, the proposed method has achieved high security and less computation time. Also, the proposed method can be resisted attacks like (statistical, brute-force, and differential).


1996 ◽  
Vol 06 (04) ◽  
pp. 725-735 ◽  
Author(s):  
ALEXANDER Yu. LOSKUTOV ◽  
VALERY M. TERESHKO ◽  
KONSTANTIN A. VASILIEV

We consider one-dimensional maps, the logistic map and an exponential map, in those sets of parameter values which correspond to their chaotic dynamics. It is proven that such dynamics may be stabilized by a certain cyclic parametric transformation operating strictly within the chaotic set. The stabilization is a result of the creation of stable periodic orbits in the initially chaotic maps. The period of these stable orbits is a multiple of the period of the cyclic transformation. It is shown that stabilized behavior cannot be destroyed by a weak noise smearing of the required parameter values. The regions where the behavior stabilization takes place are numerically estimated. Periods of the created stabile periodic orbits are calculated.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Alvaro H. Salas S ◽  
Jairo E. Castillo H ◽  
Darin J. Mosquera P

In this paper, a new analytical solution to the undamped Helmholtz oscillator equation in terms of the Weierstrass elliptic function is reported. The solution is given for any arbitrary initial conditions. A comparison between our new solution and the numerical approximate solution using the Range Kutta approach is performed. We think that the methodology employed here may be useful in the study of several nonlinear problems described by a differential equation of the form z ″ = F z in the sense that z = z t . In this context, our solutions are applied to some physical applications such as the signal that can propagate in the LC series circuits. Also, these solutions were used to describe and investigate some oscillations in plasma physics such as oscillations in electronegative plasma with Maxwellian electrons and negative ions.


Mathematics ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 7
Author(s):  
Ning Cui ◽  
Junhong Li

This paper formulates a new particle motion system. The dynamic behaviors of the system are studied including the continuous dependence on initial conditions of the system’s solution, the equilibrium stability, Hopf bifurcation at the equilibrium point, etc. This shows the rich dynamic behaviors of the system, including the supercritical Hopf bifurcations, subcritical Hopf bifurcations, and chaotic attractors. Numerical simulations are carried out to verify theoretical analyses and to exhibit the rich dynamic behaviors.


2011 ◽  
Vol 21 (01) ◽  
pp. 363-372
Author(s):  
EN-GUO GU

In this work, we build a two-dimensional dynamical fishery model in which the total harvest is obtained by a multiagent game with best reply strategy and naive expectations, i.e. each agent decides the harvest quantity by solving a profit maximization problem. Special attention is paid to the global dynamic analysis in the light of feasible domains (initial conditions giving non-negative trajectories converging to an equilibrium), which is related to the crisis of extinction. We also study the existence and stability of non-negative equilibria for models through mathematical analysis and numerical simulations. We discover the increase in the margin price of fish stock may lead to instability of the fixed point and make the system sink into chaotic attractors. Thus the fishery resource may fluctuate in a stochastic form.


2000 ◽  
Vol 10 (01) ◽  
pp. 251-256 ◽  
Author(s):  
FRANCISCO SASTRE ◽  
GABRIEL PÉREZ

The diffusively coupled lattice of odd-symmetric chaotic maps introduced by Miller and Huse undergoes a continuous ordering phase transition, belonging to a universality class close but not identical to that of the two-dimensional Ising model. Here we consider a natural mean-field approach for this model, and find that it does not have a well-defined phase transition. We show how this is due to the coexistence of two attractors in its mean-field description, for the region of interest in the coupling. The behavior of the model in this limit then becomes dependent on initial conditions, as can be seen in direct simulations.


Sign in / Sign up

Export Citation Format

Share Document