VALIDATION OF ACOUSTIC MODELS FOR TIME-HARMONIC DISSIPATIVE SCATTERING PROBLEMS

2007 ◽  
Vol 15 (01) ◽  
pp. 95-121 ◽  
Author(s):  
ALFREDO BERMÚDEZ ◽  
LUIS HERVELLA-NIETO ◽  
ANDRÉS PRIETO ◽  
RODOLFO RODRÍGUEZ

The aim of this paper is to study the time-harmonic scattering problem in a coupled fluid-porous medium system. We consider two different models for the treatment of porous materials: the Allard–Champoux equations and an approximate model based on a wall impedance condition. Both models are compared by computing analytically their respective solutions for unbounded planar obstacles, considering successively plane and spherical waves. A numerical method combining an optimal bounded PML and finite elements is also introduced to compute the solutions of both problems for more general axisymmetric geometries. This method is used to compare the solutions for a spherical absorber.

2018 ◽  
Vol 60 (1) ◽  
pp. 86-94
Author(s):  
C. E. ATHANASIADIS ◽  
E. S. ATHANASIADOU ◽  
S. DIMITROULA

We analyse a scattering problem of electromagnetic waves by a bounded chiral conductive obstacle, which is surrounded by a dielectric, via the quasi-stationary approximation for the Maxwell equations. We prove the reciprocity relations for incident plane and spherical electric waves upon the scatterer. Mixed reciprocity relations have also been proved for a plane wave and a spherical wave. In the case of spherical waves, the point sources are located either inside or outside the scatterer. These relations are used to study the inverse scattering problems.


Author(s):  
Jianli Xiang ◽  
Guozheng Yan

Abstract This paper is concerned with the inverse scattering problem of time-harmonic elastic waves by a mixed-type scatterer, which is given as the union of an impenetrable obstacle and a crack. We develop the modified factorization method to determine the shape of the mixed-type scatterer from the far field data. However, the factorization of the far field operator $F$ is related to the boundary integral matrix operator $A$, which is obtained in the study of the direct scattering problem. So, in the first part, we show the well posedness of the direct scattering problem by the boundary integral equation method. Some numerical examples are presented at the end of the paper to demonstrate the feasibility and effectiveness of the inverse algorithm.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Leonid L. Frumin

AbstractWe introduce numerical algorithms for solving the inverse and direct scattering problems for the Manakov model of vector nonlinear Schrödinger equation. We have found an algebraic group of 4-block matrices with off-diagonal blocks consisting of special vector-like matrices for generalizing the scalar problem’s efficient numerical algorithms to the vector case. The inversion of block matrices of the discretized system of Gelfand–Levitan–Marchenko integral equations solves the inverse scattering problem using the vector variant the Toeplitz Inner Bordering algorithm of Levinson’s type. The reversal of steps of the inverse problem algorithm gives the solution of the direct scattering problem. Numerical tests confirm the proposed vector algorithms’ efficiency and stability. We also present an example of the algorithms’ application to simulate the Manakov vector solitons’ collision.


1992 ◽  
Vol 03 (03) ◽  
pp. 583-603 ◽  
Author(s):  
AKHLESH LAKHTAKIA

Algorithms based on the method of moments (MOM) and the coupled dipole method (CDM) are commonly used to solve electromagnetic scattering problems. In this paper, the strong and the weak forms of both numerical techniques are derived for bianisotropic scatterers. The two techniques are shown to be fully equivalent to each other, thereby defusing claims of superiority often made for the charms of one technique over the other. In the final section, reductions of the algorithms for isotropic dielectric scatterers are explicitly given.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Frédérique Le Louër ◽  
María-Luisa Rapún

PurposeIn this paper, the authors revisit the computation of closed-form expressions of the topological indicator function for a one step imaging algorithm of two- and three-dimensional sound-soft (Dirichlet condition), sound-hard (Neumann condition) and isotropic inclusions (transmission conditions) in the free space.Design/methodology/approachFrom the addition theorem for translated harmonics, explicit expressions of the scattered waves by infinitesimal circular (and spherical) holes subject to an incident plane wave or a compactly supported distribution of point sources are available. Then the authors derive the first-order term in the asymptotic expansion of the Dirichlet and Neumann traces and their surface derivatives on the boundary of the singular medium perturbation.FindingsAs the shape gradient of shape functionals are expressed in terms of boundary integrals involving the boundary traces of the state and the associated adjoint field, then the topological gradient formulae follow readily.Originality/valueThe authors exhibit singular perturbation asymptotics that can be reused in the derivation of the topological gradient function that generates initial guesses in the iterated numerical solution of any shape optimization problem or imaging problems relying on time-harmonic acoustic wave propagation.


1972 ◽  
Vol 39 (4) ◽  
pp. 1019-1026 ◽  
Author(s):  
Stephen B. Bennett

The displacement field generated by the reflection and refraction of plane (time harmonic) elastic waves by finite obstacles of arbitrary shape, in the neighborhood of a plane interface between two elastic media, is investigated. The technique employed allows a consistent formulation of the problem for both two and three dimensions, and is not limited either to boundary shapes which are level surfaces in appropriate coordinate systems, i.e., circular cylinders, spheres, etc., or to closed boundary curves or surfaces. The approach is due to Twersky, and has been applied to many problems of the scattering of electromagnetic waves. The method consists of expressing the net field due to all multiple scattering in terms of the field reflected from each boundary in isolation when subjected to an incident plane elastic wave. Thus the technique makes use of more elemental scattering problems whose solutions are extant. By way of illustration, a numerical solution to the scattering of a plane elastic wave by a rigid circular cylindrical obstacle adjacent to a plane free surface is considered.


2007 ◽  
Author(s):  
Κωνσταντίνος Αναγνωστόπουλος

The scope of this doctoral thesis is, first, to develop an analytical, in principle, method for the solution of the two-dimensional scattering problem of time-harmonic elastic plane waves by a homogeneous orthotropic scatterer, second, to establish the complete theoretical framework, which is necessary for the application of the Linear Sampling Method (LSM) to the problem of reconstructing the support of twodimensional elastic anisotropic inclusions embedded in isotropic media and, third, to derive an extension of the Factorization Method (FM) to the inverse elastic scattering problem by penetrable isotropic bodies for time-harmonic plane wave incidence. Aconcise description of the contents of the thesis is outlined below. Chapter one contains a detailed bibliographical search, which is related to the analytical and numerical methods (with emphasis on the former) usually employed for the solution of the direct scattering problem by anisotropic elastic bodies as well as to those inverse scattering techniques, which are usually referred to as sampling and probe methods and, in particular, the LSM and the FM. Chapter two commences with a brief discussion of some fundamental results from the linearized theory of dynamic elasticity. The problem of a rigorous analysis of the elasticity equation governing the elastic behaviour of an orthotropic material in two dimensions is then addressed. This analysis, which is based on a suitable diagonalization applied to the underlying differential system and a plane wave expansion of the sought field, results in a Fourier series expansion for the displacement field describing the elastic deformations of the orthotropic medium and is complemented by the results of appendix A. A mathematical model for the solution of the associated transmission scattering problem, taking advantage of the aforementioned expansion, is also settled and analyzed. The details of its numerical treatment can be found in appendix B. Finally, numerical results for several inclusion geometries and a system thereof with material properties characterized by the cubic symmetryclass -a special case of the orthotropic class of symmetry- are presented. In chapter three, the LSM is extended to the case of a two-dimensional homogeneous anisotropic inclusion embedded in an isotropic background medium. The concepts of the elastic Herglotz function, the elastic far-field operator and the corresponding far-field equation, on which the formulation of the LSM heavily relies, are first introduced. Then, the proposed inverse scattering scheme is introduced and discussed in detail. By means of an appropriate operator decomposition of the far-field operator,the main theorem of the method, concerning the characterization of the behaviour of an approximate solution to the far-field equation at the boundary of the scatterer, is proved. In the end of the third chapter, the performance of the LSM is examined by applying it to a set of different geometric configurations of the elastic inclusion, filled with a cubic anisotropic material. An investigation of the effect of the various parameters entering the problem, such as the scatterer’s degree of anisotropy, the polarization of the elastic point source located at the sampling point and the noise level in the synthetic far-field data, on the reconstructed geometric profiles’ quality,is carried out. In the fourth chapter, the FM is elaborated for the shape reconstruction of a penetrable isotropic elastic body from the knowledge of the far-field pattern of the scattered fields for plane incident waves. The theoretical analysis is conducted in three dimensions and focuses on deriving a factorization of the far-field operator, which is the cornerstone for the applicability of the particular inversion scheme, and investigating thorougly the properties of the involved operators. This investigation gave birth to a number of interesting by-products and one of them, namely, a regularity estimate for the solution of a particular form of the corresponding interior transmission problem, is the subject matter of appendix C. By means of the proposed factorization, a series of theorems, which finally lead to an explicit characterization of the scattering obstacle, is then proved. In the end of the chapter, the performance of the investigated inverse scattering technique is demonstrated by applying it to specific two-dimensional elastic scatterer reconstruction problems involving different scatterer configurations and various choices for their constitutive parameters. The effect of using different levels of additive random noise in the forward synthetic data and combining results obtained for different polarizations of the elastic point source located at the sampling point, on the quality of the reconstructed profiles, is also examined. Finally, chapter five draws the conclusions that flow from the foregoing chapters and discusses the contribution of this doctoral thesis. A brief discussion about possible future studies is also included.


Author(s):  
José Díaz ◽  
Antonio Naranjo

This work provides an analytical approach to characterize and determine solutions to a porous medium system of equations with views in applications to invasive-invaded biological dynamics. Firstly, the existence and uniqueness of solutions are proved. Afterwards, profiles of solutions are obtained making use of the selfsimilar structure that permits to show the existence of a diffusive front. The solutions are then studied within the Travelling Waves (TW) domain showing the existence of potential and exponential profiles in the stable connection that converges to the stationary solutions in which the invasive specie predominates. The TW profiles are shown to exist based on the geometry perturbation theory together with an analytical-topological argument in the phase plane. The finding of an exponential decaying rate (related with the advection and diffusion parameters) in the invaded specie TW is not trivial in the non-linear diffusion case and reflects the existence of a TW trajectory governed by the invaded specie runaway (in the direction of the advection) and the diffusion (acting along a finite speed front or support).


Sign in / Sign up

Export Citation Format

Share Document