MICROCRACKS IN ~ 100 MeV Si7+-ION-IRRADIATED p-SILICON SURFACES

2004 ◽  
Vol 11 (03) ◽  
pp. 265-269
Author(s):  
O. P. SINHA ◽  
P. C. SRIVASTAVA ◽  
V. GANESAN

The p-silicon surfaces have been irradiated with ~ 100 MeV Si 7+ions to a fluence of 2.2×1013 ions cm -2, and surface morphology has been studied with atomic force microscopy (AFM). Interesting features of cracks of ~ 47 nm in depth and ~ 103 nm in width on the irradiated surfaces have been observed. The observed features seemed to have been caused by the irradiation-induced stress in the irradiated regions of the target surface.

2014 ◽  
Vol 14 (2) ◽  
pp. 155-160
Author(s):  
SK Lamichhane

In covalent solids, more energetic irradiation sources are necessary to produce detectable level of damage. The atomic force microscopic (AFM) studies of mega electron-volt (MeV) ions irradiated silicon surfaces have been studied to a fluence of 5×108 ions cm-2 and surface morphology has been studied with AFM. Interesting features of cracks of ~ 50 nm in depth and ~ 100 nm in width have been observed on the irradiated surface. The features seemed to have been caused by the irradiation-induced stress in the irradiated regions of the target surface. The observed feature of cracks seems to be mainly due to the high electronic energy loss of the irradiated ions on the surface induces the stress in it. It confirms that the coarseness of the microstructure of a material directly affects the mechanical properties. DOI: http://dx.doi.org/10.3126/njst.v14i2.10430   Nepal Journal of Science and Technology Vol. 14, No. 2 (2013) 155-160


1992 ◽  
Author(s):  
Mark R. Kozlowski ◽  
Michael C. Staggs ◽  
Mehdi Balooch ◽  
Robert J. Tench ◽  
Wigbert J. Siekhaus

1999 ◽  
Vol 200 (3-4) ◽  
pp. 348-352 ◽  
Author(s):  
R.S Qhalid Fareed ◽  
S Tottori ◽  
K Nishino ◽  
S Sakai

1995 ◽  
Vol 413 ◽  
Author(s):  
V. Shivshankar ◽  
C. Sung ◽  
J. Kumar ◽  
S. K. Tripathy ◽  
D. J. Sandman

ABSTRACTWe have studied the surface morphology of free standing single crystals of thermochromic polydiacetylenes (PDAs), namely, ETCD and IPUDO (respectively, the ethyl and isopropyl urethanes of 5,7-dodecadiyn-1,12-diol), by Atomic Force Microscopy (AFM) under ambient conditions. Micron scale as well as molecularly resolved images were obtained. The micron scale images indicate a variable surface, and the molecularly resolved images show a well defined 2-D lattice that is interpreted in terms of molecular models and known crystallographic data. Thereby information about surface morphology, which is crucial to potential optical device or chromic sensor performance is available. We also report the observation of a “macroscopic shattering” of the IPUDO monomer crystal during in-situ UV polymerization studies.


2000 ◽  
Vol 32 (7) ◽  
pp. 531-536 ◽  
Author(s):  
Dong Wook Kim ◽  
Seung Sang Hwang ◽  
Soon Man Hong ◽  
Eung-Chan Lee

Nanophotonics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1659-1671
Author(s):  
Nusrat Jahan ◽  
Hanwei Wang ◽  
Shensheng Zhao ◽  
Arkajit Dutta ◽  
Hsuan-Kai Huang ◽  
...  

AbstractScanning probe techniques have evolved significantly in recent years to detect surface morphology of materials down to subnanometer resolution, but without revealing spectroscopic information. In this review, we discuss recent advances in scanning probe techniques that capitalize on light-induced forces for studying nanomaterials down to molecular specificities with nanometer spatial resolution.


Sign in / Sign up

Export Citation Format

Share Document