scholarly journals Morphology and AFM Spectroscopy of Irradiated Interface of Silicon

2014 ◽  
Vol 14 (2) ◽  
pp. 155-160
Author(s):  
SK Lamichhane

In covalent solids, more energetic irradiation sources are necessary to produce detectable level of damage. The atomic force microscopic (AFM) studies of mega electron-volt (MeV) ions irradiated silicon surfaces have been studied to a fluence of 5×108 ions cm-2 and surface morphology has been studied with AFM. Interesting features of cracks of ~ 50 nm in depth and ~ 100 nm in width have been observed on the irradiated surface. The features seemed to have been caused by the irradiation-induced stress in the irradiated regions of the target surface. The observed feature of cracks seems to be mainly due to the high electronic energy loss of the irradiated ions on the surface induces the stress in it. It confirms that the coarseness of the microstructure of a material directly affects the mechanical properties. DOI: http://dx.doi.org/10.3126/njst.v14i2.10430   Nepal Journal of Science and Technology Vol. 14, No. 2 (2013) 155-160

2020 ◽  
pp. 72-79
Author(s):  
Min Raj Lamsal

Atomic Force Microscopic (AFM) studies of Mega electron-volt (MeV) ions irradiated silicon surface morphology has been studied to a fluence of 5 x 108 ions/cm2. Interesting features of cracks of 50 nm in depth and 100 nm in width have been observed on the irradiated surface. The features seemed to have been caused by the irradiation-induced stress in the irradiated regions of the target surface. The observed feature of crack seems to be mainly due to the high electronic energy loss of the irradiated ions on the surface that induces the stress in it. It confirms that the coarseness of the microstructure of a material directly affect the mechanical properties.


2004 ◽  
Vol 11 (03) ◽  
pp. 265-269
Author(s):  
O. P. SINHA ◽  
P. C. SRIVASTAVA ◽  
V. GANESAN

The p-silicon surfaces have been irradiated with ~ 100 MeV Si 7+ions to a fluence of 2.2×1013 ions cm -2, and surface morphology has been studied with atomic force microscopy (AFM). Interesting features of cracks of ~ 47 nm in depth and ~ 103 nm in width on the irradiated surfaces have been observed. The observed features seemed to have been caused by the irradiation-induced stress in the irradiated regions of the target surface.


2003 ◽  
Vol 806 ◽  
Author(s):  
Senthil N Sambandam ◽  
Shekhar Bhansali ◽  
Venkat R. Bhethanabotla

ABSTRACTMicrostructures of multi-component amorphous metallic glass alloys are becoming increasingly important due to their excellent mechanical properties and low coefficient of friction. In this work, thin films of Zr-Ti-Cu-Ni-Be have been deposited by DC magnetron sputtering in view of exploring their potential technological applications in fields such as Micro Electro Mechanical Systems (MEMS). Their structure, composition, surface morphology, mechanical properties viz., hardness and Young's modulus were analyzed using X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Nanoindentation. Influence of the deposition parameters of sputtering pressure and power upon the composition and surface morphology of these films has been evidenced by SEM, and AFM analysis, showing that such a process yields very smooth films with target composition at low sputtering pressures. These studies are useful in understanding the multicomponent sputtering process.


2015 ◽  
Vol 723 ◽  
pp. 515-519
Author(s):  
Qing Yun Chen ◽  
Kai Min Shih ◽  
Man Yi Duan ◽  
Lie Lin Wang

Diamond-like carbon (DLC) film has remarkable physical, mechanical, biomedical and tribological properties that make it attractive material for numerous industrial applications needs of advanced mechanical systems. In this study, deposition process of DLC films on Si (100) are performed by direct-current (DC) magnetron sputtering method. The effects of interlayer on the compositions, structures and mechanical properties of DLC films are studied. The scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies reveal the creation of high uniform surface morphology and low roughness DLC films with SiNxinterlayer. For comparison, DLC films with different interlayers are also grown. The Raman spectra are analyzed in order to characterize the film compositions. Indentation test was performed to value the mechanical properties of DLC films. Raman, SEM, and AFM analyses are correlated with the mechanical properties of the DLC films.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaoling Liu ◽  
David M. Grant ◽  
Andrew J. Parsons ◽  
Lee T. Harper ◽  
Chris D. Rudd ◽  
...  

Bioresorbable phosphate glass fibre reinforced polyester composites have been investigated as replacement for some traditional metallic orthopaedic implants, such as bone fracture fixation plates. However, composites tested revealed loss of the interfacial integrity after immersion within aqueous media which resulted in rapid loss of mechanical properties. Physical modification of fibres to change fibre surface morphology has been shown to be an effective method to improve fibre and matrix adhesion in composites. In this study, biodegradable magnesium which would gradually degrade to Mg2+in the human body was deposited via magnetron sputtering onto bioresorbable phosphate glass fibres to obtain roughened fibre surfaces. Fibre surface morphology after coating was observed using scanning electron microscope (SEM). The roughness profile and crystalline texture of the coatings were determined via atomic force microscope (AFM) and X-ray diffraction (XRD) analysis, respectively. The roughness of the coatings was seen to increase from40±1 nm to80±1 nm. The mechanical properties (tensile strength and modulus) of fibre with coatings decreased with increased magnesium coating thickness.


2017 ◽  
Vol 68 (11) ◽  
pp. 2700-2703 ◽  
Author(s):  
Kamel Earar ◽  
Vasile Iulian Antoniac ◽  
Sorana Baciu ◽  
Simion Bran ◽  
Florin Onisor ◽  
...  

This study examined and compared surface of human dentine after acidic etching with hydrogen peroxide, phosphoric acid liquid and gel. Surface demineralization of dentin is necessary for a strong bond of adhesive at dental surface. Split human teeth were used. After application of mentioned substances at dentin level measures of the contact angle and surface morphology were employed. Surface morphology was analyzed with the help of scanning electron microscopy and atomic force microscopy. Liquid phosphoric acid yielded highest demineralization showing better hydrophobicity than the rest, thus having more contact surface. Surface roughness are less evident and formed surface micropores of 4 �m remained open after wash and air dry providing better adhesive canalicular penetration and subsequent bond.


2019 ◽  
pp. 135-142
Author(s):  
N. V. Shadrinov ◽  
U. V. Evseeva

The results of study of the influence of hollow corundum microspheres HCM-S (5–100 µm) and HCM-L (70–180 µm) on the properties of nitrile butadiene rubber BNKS-18 are presented. The dependence of elastomer resistance to abrasion impact and physic and mechanical properties on the dispersion and concentration of hollow corundum microspheres is shown. The process of hollow corundum microspheres exfoliation of the elastomeric matrix, which largely determines the change of physic and mechanical properties, has been studied by specially developed stretching device compatible with an atomic force microscope. The paper describes microspheres exfoliation which is conventionally divided into 3 stages.


2005 ◽  
Vol 480-481 ◽  
pp. 287-292 ◽  
Author(s):  
S.E. Paje ◽  
F. Teran ◽  
J.M. Riveiro ◽  
J. Llopis ◽  
M.A. García ◽  
...  

In this research we study optical absorption and morphology of silver films prepared with a sputtering method. Silver granular films are obtained on a glass substrate for films with thickness smaller than about 60 Å. Superficial silver clusters of around 100 nm in diameter are clearly seen in the atomic force micrographs. The absorption of these samples are characterized by plasmon excitation in the 450-650 nm spectral range, which differs from the known excitation of silver nanoparticles fabricated by different techniques. The optical absorption of silver granular films depend on sputtering conditions like substrate temperature or deposition rate and correlates with the surface morphology.


2000 ◽  
Vol 39 (Part 1, No. 6B) ◽  
pp. 3711-3716 ◽  
Author(s):  
Hatsuki Shiga ◽  
Yukako Yamane ◽  
Etsuro Ito ◽  
Kazuhiro Abe ◽  
Kazushige Kawabata ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document