HETEROINTERFACE PROPERTIES OF NOVEL HYBRID SOLAR CELLS CONSISTING OF TRANSPARENT CONDUCTIVE POLYMERS AND III-NITRIDE SEMICONDUCTOR

2010 ◽  
Vol 19 (04) ◽  
pp. 703-711 ◽  
Author(s):  
NOBUYUKI MATSUKI ◽  
YOSHITAKA NAKANO ◽  
YOSHIHIRO IROKAWA ◽  
MASATOMO SUMIYA

We have investigated the heterointerface properties of recently developed hybrid solar cells comprising a Schottky contact made of transparent conductive polymer (TCP) and an underlying GaN semiconductor layer. The heterointerface capacitance induced by the depletion layer under the TCP Schottky contact showed a rapid drop at a specific frequency. An intrinsic capacitance component that was derived from the capacitance–frequency (C–f) characteristics of the heterointerface showed clear correlation with the open circuit voltage. Hence, the C–f characterization using TCP Schottky contacts is indicative of the quality of the heterointerface.

RSC Advances ◽  
2016 ◽  
Vol 6 (90) ◽  
pp. 86836-86842 ◽  
Author(s):  
Cheuk-yi Lam ◽  
Sanqiang Shi ◽  
Jian Lu ◽  
Paddy K. L. Chan

The mechanisms causing the improvement of PCE in hybrid SiNWs/PEDOT:PSS solar cells by formic acid treatment were investigated.


Solar Energy ◽  
2015 ◽  
Vol 116 ◽  
pp. 25-36 ◽  
Author(s):  
Laveena P. D’Souza ◽  
Vipin Amoli ◽  
H.R. Chandan ◽  
Anil Kumar Sinha ◽  
Ranjith Krishna Pai ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
S. Govindraju ◽  
N. Ntholeng ◽  
K. Ranganathan ◽  
M. J. Moloto ◽  
L. M. Sikhwivhilu ◽  
...  

It has been said that substitution of fullerenes with semiconductor nanocrystals in bulk heterojunction solar cells can potentially increase the power conversion efficiencies (PCE) of these devices far beyond the 10% mark. However new semiconductor nanocrystals other than the potentially toxic CdSe and PbS are necessary. Herein we report on the synthesis of Cu2Se nanocrystals and their incorporation into polyvinylcarbazole (PVK) to form polymer nanocomposites for use as active layers in hybrid solar cells. Nearly monodispersed 4 nm Cu2Se nanocrystals were synthesized using the conventional colloidal synthesis. Varying weight % of these nanocrystals was added to PVK to form polymer nanocomposites. The 10% polymer nanocomposite showed retention of the properties of the pure polymer whilst the 50% resulted in a complete breakdown of the polymeric structure as evident from the FTIR, TGA, and SEM. The lack of transport channels in the 50% polymer nanocomposite solar cell resulted in a device with no photoresponse whilst the 10% polymer nanocomposite resulted in a device with an open circuit voltage of 0.50 V, a short circuit current of 7.34 mA/cm2, and a fill factor of 22.28% resulting in a PCE of 1.02%.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Chandra Bhal Singh ◽  
Vandana Singh ◽  
S. Bhattacharya ◽  
P. Balaji Bhargav ◽  
Nafis Ahmed

Hybrid solar cells are based on the concept of using both organic and inorganic materials for fabrication of devices. Hybrid solar cells, based on a heterojunction between inorganic electron acceptor layer and organic donor layer, has been fabricated. Effect of electron transport layer on open circuit voltage (Voc) of hybrid solar cells was investigated. Hybrid solar cells were fabricated using amorphous silicon as main absorbing layer and as electron acceptor layer while using copper phthalocyanine (CuPc) as the donor materials. Al doped ZnO layer was used as buffer layer between ITO and a-Si:H to prevent ITO from reacting with silane gas during plasma enhanced chemical deposition (PECVD) process. ZnO:Al thin film also acts as electron transport layer. The open circuit voltage of hybrid solar cells studied with varying the thickness of ZnO:Al layer. Voc was increased from 0.30 volt to 0.52 volt with increasing the thickness of ZnO:Al layer from 15 nm to 45 nm. The poor interface between inorganic (a-Si:H) and organic layers may be a possible reason for low fill factor and low photocurrent in hybrid solar cells.


Photonics ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 3
Author(s):  
Genjie Yang ◽  
Dianli Zhou ◽  
Jiawen Li ◽  
Junsheng Yu

The quality of active layer film is the key factor affecting the performance of perovskite solar cells. In this work, we incorporated CsPbI3 quantum dots (QDs) materials into the MAPbI3 perovskite precursor to form photoactive layer. On one hand, CsPbI3 QDs can be used as nucleation center to enhance the compactness of the perovskite film, and on the other hand, partially CsPbI3 QDs can be dissociated as anions and cations to passivate vacancy defects in the perovskite active layer. As a result, the film quality of the active layer was improved remarkably, thus exciton recombination was reduced, and carrier transfer increased accordingly. The devices based on doped-CsPbI3 QDs film had higher short circuit current, open circuit voltage and filling factor. Finally, the power conversion efficiency (PCE) was greatly enhanced from 14.85% to 17.04%. Furthermore, optimized devices also exhibited better stability. This work provides an effective strategy for the processing of high-quality perovskite films, which is of great value for the preparation and research of perovskite photoelectronic devices.


2009 ◽  
Vol 1212 ◽  
Author(s):  
Jihua Yang ◽  
Renjia Zhou ◽  
Aiwei Tang ◽  
Jiangeng Xue

AbstractHybrid solar cells based on conjugated polymers and colloidally synthesized inorganic nanoparticles have been recognized as an alternative to all-organic solar cells due to the intrinsically higher charge transport property in inorganic component. In this work, CdSe nanoparticles with different sizes, served as the electron acceptor, have been used together with poly(3-hexylthiophene) (P3HT) as the active layer for the hybrid solar cells. The power-conversion efficiency (ηp) of these devices strongly depends on the size of the CdSe nanoparticles, increasing from ηp ˜0.5% for 4.0 nm size nanoparticles to ηp ˜2.4% for 6.8 nm size nanoparticles under AM 1.5 G solar illumination. Furthermore, the devices also exhibit an unusual initial aging period when exposed to the air, which results in a significant enhancement in the short-circuit current, open-circuit voltage and power conversion efficiency.


2009 ◽  
Vol 1211 ◽  
Author(s):  
Michael Ibrahim Ibrahim ◽  
Maria Joseph Bassil ◽  
Umit B. Demirci ◽  
Georges El Hajj Moussa ◽  
Vincent Salles ◽  
...  

AbstractSolar energy harvesting has been extensively studied in the last three decades to provide a green energy source. Hybrid photovoltaics (HPV) based on titania (TiO2) are researched for their easiness of production and low cost. Nanostructured mesoporous titania films and conductive polymers were used recently to form hybrid solar cells [1]. TiO2, mainly an n-type semiconductor with a band gap of 4.2 eV, is employed in several applications from which paints form the highest world use of titania making it an attractive material to use in HPV industry. On the other side, our targeted conductive polymer is polyaniline (PANI), a hole conductor polymer, which is used in such HPV cells due to its high charge-carriers mobility, absorption coefficient in the visible range and environmental stability. PANI and nanocrystalline TiO2 films fabricated using spin coating or layer by layer assembly techniques behave as a p-n heterojunction diode and can be used as solar cells [2-4].Precursor solutions are prepared by polymerizing aniline-HCl inside an aqueous solution of titania. To study the effect of the precursor concentration on the PANI-TiO2 composite, polymerization of aniline is held in diverse TiO2 concentrations in water. Industrial grade TiO2 powders with particle size ranging from 200 nm to several μm are used. PANI-TiO2 precursor solutions are dip coated or slot dyed on various substrates such as PMMA, PET and PP, all with metal oxide conductive coatings. Bulk PANI-TiO2 pellets are prepared for comparison. The electrical and photovoltaic properties of the obtained films and pellets are investigated to choose the optimum blend composition for HPV cell. Finally a theoretical study and an analytical model of the HPV cell are presented relating the size of TiO2 and PANI particles and their respective geometrical distribution inside the blend to the transport characteristics of charge carriers and the overall efficiency of the HPV cell.[1] M. McGehee, MRS Bulletin, Vol. 34, No. 2, February 2009.[2] Z. Liu, W. Guo, D. Fu and W. Chen, Synthetic Metals, Vol. 156, pp. 414–416, 2006.[3] Z. Liu, J. Zhou, H. Xue, L. Shen, H. Zang and W. Chen, Synthetic Metals, Vol. 156, pp. 721–723, 2006.[4] X. Zhang, G. Yan, H. Ding and Y. Shan, Materials Chemistry and Physics, Vol. 102, pp. 249–254, 2007.


Sign in / Sign up

Export Citation Format

Share Document