Molybdenum disulfide saturable absorber for eye-safe mode-locked fiber laser generation

2018 ◽  
Vol 27 (01) ◽  
pp. 1850010 ◽  
Author(s):  
A. A. Latiff ◽  
X. S. Cheng ◽  
M. F. M. Rusdi ◽  
M. C. Paul ◽  
S. W. Harun ◽  
...  

We demonstrated an all-fiber mode-locked Thulium–Holmium co-doped fiber laser (THDFL) based on molybdenum disulfide (MoS2) tape saturable absorber. The THDFL generates a mode-locked pulse in anomalous regime at 1,979[Formula: see text]nm using 5[Formula: see text]m long Thulium–Holmium co-doped (THDF) as a gain medium. Through mechanical exfoliation method, the MoS2 was mechanically extracted from a commercial MoS2 crystal by using a clear scotch tape. Through balanced twin-detector measurement, the obtained MoS2 tape has a nonlinear absorption of 10% with 100[Formula: see text]MW/cm2 saturation intensity. Under 775[Formula: see text]mW to 852[Formula: see text]mW pump power, a stable pulse train was obtained at 9.12[Formula: see text]MHz repetition rate with a signal-to-noise ratio (SNR) of 45[Formula: see text]dB. The maximum output power and pulse energy were measured about 20[Formula: see text]mW and 2.2[Formula: see text]nJ, respectively. With a 3-dB spectral bandwidth of 2.1[Formula: see text]nm, the minimum possible pulse width was determined as 1.97[Formula: see text]ps.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
H. Ahmad ◽  
S. N. Aidit ◽  
S. I. Ooi ◽  
M. Z. Samion ◽  
S. Wang ◽  
...  

AbstractIn this work, a Figure-9 (F9) bismuth-doped fiber laser (BiDFL) operating in the dissipative soliton resonance (DSR) regime is presented. The 1338 nm laser used a BiDF as the active gain medium, while a nonlinear amplifying loop mirror (NALM) in an F9 configuration was employed to obtain high energy mode-locked pulses. The wave breaking-free rectangular pulse widened significantly in the time domain with the increase of the pump power while maintaining an almost constant peak power of 0.6 W. At the maximum pump power, the mode-locked laser delivered a rectangular-shaped pulse with a duration of 48 ns, repetition rate of 362 kHz and a radio-frequency signal-to-noise ratio of more than 60 dB. The maximum output power was recorded at around 11 mW with a corresponding pulse energy of 30 nJ. This is, to the best of the author’s knowledge, the highest mode-locked pulse energy obtained at 1.3 μm as well as the demonstration of an NALM BiDFL in a F9 configuration.


Author(s):  
Jiaxin Song ◽  
Hanshuo Wu ◽  
Jun Ye ◽  
Hanwei Zhang ◽  
Jiangming Xu ◽  
...  

In this paper, we experimentally investigated the extreme frequency shift in high-power Raman fiber laser (RFL). The RFL was developed by using a pair of fiber Bragg gratings with fixed and matched central wavelength (1120 nm) combined with a piece of 31-m-long polarization maintaining (PM) passive fiber adopted as Raman gain medium. The pump source was a homemade high-power, linearly polarized (LP) wavelength-tunable master oscillator power amplifier (MOPA) source with ${\sim}25~\text{nm}$ tunable working range (1055–1080 nm). High-power and high-efficiency RFL with extreme frequency shift between the pump and Stokes light was explored. It is found that frequency shift located within 10.6 THz and 15.2 THz can ensure efficient Raman lasing, where the conversion efficiency is more than 95% of the maximal value, 71.3%. In addition, a maximum output power of 147.1 W was obtained with an optical efficiency of 71.3%, which is the highest power ever reported in LP RFLs to the best of our knowledge.


2020 ◽  
Vol 8 ◽  
Author(s):  
Meng Wang ◽  
Yijian Huang ◽  
Zongpeng Song ◽  
Jincheng Wei ◽  
Jihong Pei ◽  
...  

We report on mode-locked thulium-doped fiber lasers with high-energy nanosecond pulses, relying on the transmission in a semiconductor saturable absorber (SESA) and a carbon nanotube (CNTs-PVA) film separately. A section of an SMF–MMF–SMF structure multimode interferometer with a transmission peak wavelength of ∼2003 nm was used as a wavelength selector to fix the laser wavelength. When the SESA acted as a saturable absorber (SA), the mode-locked fiber laser had a maximum output power of ∼461 mW with a pulse energy of ∼0.14 μJ and a pulse duration of ∼9.14 ns. In a CNT-film-based mode-locked fiber laser, stable mode-locked pulses with the maximum output power of ∼46 mW, pulse energy of ∼26.8 nJ and pulse duration of ∼9.3 ns were obtained. To the best of our knowledge, our experiments demonstrated the first 2 μm region ‘real’ SA-based dissipative soliton resonance with the highest mode-locked pulse energy from a ‘real’ SA-based all-fiberized resonator.


Author(s):  
Nur Hidayah Muhamad Apandi ◽  
Siti Nur Fatin Zuikafly ◽  
Nabilah Kasim ◽  
Mohd Ambri Mohamed ◽  
Sulaiman Wadi Harun ◽  
...  

In this paper, a passively Q-switched Erbium doped fiber laser (EDFL) by residing Graphene nanoplatelets (GnPs) embedded in polyvinyl alcohol (PVA) based saturable absorber (SA) is demonstrated. To aid the dispersion of GNPs, a surfactant is used and then it is mixed with polyvinyl alcohol (PVA) as host polymer to develop GnPs-PVA film based passive SA. The GnPs-PVA based film then integrated in laser cavity in ring cavity configuration for pulse laser generation. The experimental works show that the proposed passive SA operates at input pump power range from 77 mW to 128 mW with a tunable repetition rate from 78.4 kHz to 114.8 kHz and a shortest pulse width of 3.69 µs. The laser produces maximum instantaneous output peak power and pulse energy of 7.3 mW and 30.46 nJ, respectively and accompanied by signal to noise ratio (SNR) of 64 dB.


2018 ◽  
Vol 7 (4.30) ◽  
pp. 334
Author(s):  
Yushazlina R. Yuzaile ◽  
Noor A. Awang ◽  
Zahariah Zakaria ◽  
Noor U.H.H Zalkepali ◽  
Amirah A. Latif ◽  
...  

This paper reported a successful demonstration on Q-switched fiber laser by using graphite as saturable absorber (SA). The graphite is deposited on the fiber ferrule through a simple mechanical exfoliation method. The modulation depth of the graphite SA is 19.2% with a saturation intensity of 85 MW/cm². The maximum achievable pulse repetition rates and pulse width are 42.41 kHz and 3.40 μs respectively. Meanwhile, its optical signal-to-noise ratio is about 50.81 dB. The Q-switched pulses have the maximum pulse energy of 5.84 nJ. These outcomes demonstrated that a stable output of passively Q-switched fiber laser is produced and can be applied for various optical fiber applications.


Author(s):  
Ezzatul Irradah Ismail ◽  
S Muhammad Ashraf Zolkopli ◽  
Muhammad Quisar Lokman ◽  
Hafizal Yahaya ◽  
Sulaiman Wadi Harun ◽  
...  

<span lang="EN-US">In this paper, we demonstrated a Q-switched erbium doped fiber laser (EDFL) incorporating Antimony (III) Telluride (Sb<sub>2</sub>Te<sub>3</sub>) in polyvinyl alchohol (PVA) as passive saturable absorber.  The saturable absorber were fabricated by dissolving Antimony (III) Telluride powder into PVA solution and dry in the ambient temperature for 48 hours. Then, 1 mm<sup>2</sup> x 1 mm<sup>2</sup> Sb<sub>2</sub>Te<sub>3</sub>-PVA film based saturable absorber were sandwiched in between FC/PC ferrule for Q-switched laser generation. The stable and self-started Q-switched laser operates at center wavelength 1560 nm with 3 dB bandwidth of 0.23 nm. The laser operates at pump power of 29.3 mW until 84.9 mW with repetition rate of 20.99 kHz to 89.29 kHz and pulse width of 13.95 µs to 5.10 µs. At maximum pump power, the laser able to achieve pulse energy of 62.72 nJ and high signal to noise ratio of 71.4</span>


2019 ◽  
Vol 8 (3) ◽  
pp. 1022-1027
Author(s):  
Belal Ahmed Hamida ◽  
Tawfig Eltaif ◽  
Farhan Daniel Bin Mohd Noh ◽  
Sheroz Khan

This paper reported the effect of different coupling ratio in continuous wave fiber laser in a ring cavity configuration. Different coupling ratios of 10/90 and 50/50 were tested. Where the output power may vary depending on the ratio and it can be applied to specific area that requires either high or low output power. In addition, generation of passive Q-switched erbium doped fiber laser (EDFL) using graphene based saturable absorber in ring cavity using different coupling ratio was experimentally investigated. As a result, wavelength centered at 1566.62nm is obtain from EDFL cavity. Moreover, the cavity using coupler of 50/50 is capable to achieve Q-switched pulses as compared to the cavity using coupler of 10/90. Where the maximum output power recorded is 336mW with pulse repetition rate of 23.74 kHz. In addition, the pulse width is 3.84µs, and pulse energy is 14.15nJ.


2021 ◽  
Vol 2075 (1) ◽  
pp. 012020
Author(s):  
M F A Rahman ◽  
P H Reddy ◽  
A Ahmad ◽  
A A Latiff ◽  
M F Baharom ◽  
...  

Abstract In this paper, we present a Q-switched fibre laser at 1069 nm which is induced by an 8 cm long Hafnium bismuth erbium co-doped fibre (HBEDF) saturable absorber (SA). The pulsating laser has a maximum repetition rate of 67 kHz at 175 mW pump power. We obtained the narrowest pulse width of 3.48 μs, the maximum pulse energy of 70.2 nJ, the maximum output power of 4.7 mW and the maximum peak power of 20.1 mW. The Q-switched laser is simple and may found practical applications in medicine and remote sensing.


Author(s):  
Hazlihan Haris ◽  
Ahmad Razif Muhammad ◽  
Norazlina Saidin ◽  
Mohd Shahnan Zainal Abidin ◽  
Hamzah Arof ◽  
...  

<p>We report on the generation of dual-wavelength fiber laser peaking at 1990.64 and 1998.92 nm with a simple ring cavity setup. The lasers are demonstrated using a fabricated silica-based nano-engineered octagonal shaped double-clad Thulium-Ytterbium co-doped fiber (TYDF) as a gain medium in a simple all-fiber ring configuration. By using 980 nm multimode laser, a stable dual-wavelength laser is generated at a threshold pump power of 1500 mW due to the non-polarization rotation (NPR) effect occurred in the cavity. The effect has been self-controlled by a suppression of mode competition in the gain medium. The result shows that the slope efficiency of the generated dual–wavelength laser is measured to be 27.23%. This dual-wavelength TYDF laser operated steadily at room temperature with a 34 dB optical signal-to-noise ratio.</p><p> </p><strong><em>Keywords</em></strong><em>: Dual-wavelength fiber laser, nano-engineered glass, silica-based TYDF, NPR effect.</em>


Sign in / Sign up

Export Citation Format

Share Document