scholarly journals Representations of the infinite-dimensional p-adic affine group

Author(s):  
Anatoly N. Kochubei ◽  
Yuri Kondratiev

We introduce an infinite-dimensional [Formula: see text]-adic affine group and construct its irreducible unitary representation. Our approach follows the one used by Vershik, Gelfand and Graev for the diffeomorphism group, but with modifications made necessary by the fact that the group does not act on the phase space. However, it is possible to define its action on some classes of functions.

2008 ◽  
Vol 19 (10) ◽  
pp. 1187-1201 ◽  
Author(s):  
MASAYASU MORIWAKI

Kazhdan, Kostant, Binegar–Zierau and Kobayashi–Ørsted constructed a distinguished infinite-dimensional irreducible unitary representation π of the indefinite orthogonal group G = O(2p, 2q) for p, q ≥ 1 with p + q > 2, which has the smallest Gelfand–Kirillov dimension 2p + 2q - 3 among all infinite-dimensional irreducible unitary representations of G and hence is called the minimal representation. We consider, for which subgroup G′ of G, the restriction π|G′ is multiplicity-free. We prove that the restriction of π to any subgroup containing the direct product group U(p1) × U(p2) × U(q) for p1, p2 ≥ 1 with p1 + p2 = p is multiplicity-free, whereas the restriction to U(p1) × U(p2) × U(q1) × U(q2) for q1, q2 ≥ 1 with q1 + q2 = q has infinite multiplicities.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Temple He ◽  
Prahar Mitra

Abstract We perform a careful study of the infrared sector of massless non-abelian gauge theories in four-dimensional Minkowski spacetime using the covariant phase space formalism, taking into account the boundary contributions arising from the gauge sector of the theory. Upon quantization, we show that the boundary contributions lead to an infinite degeneracy of the vacua. The Hilbert space of the vacuum sector is not only shown to be remarkably simple, but also universal. We derive a Ward identity that relates the n-point amplitude between two generic in- and out-vacuum states to the one computed in standard QFT. In addition, we demonstrate that the familiar single soft gluon theorem and multiple consecutive soft gluon theorem are consequences of the Ward identity.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Maciej Kolanowski ◽  
Jerzy Lewandowski

Abstract We generalize a notion of ‘conserved’ charges given by Wald and Zoupas to the asymptotically de Sitter spacetimes. Surprisingly, our construction is less ambiguous than the one encountered in the asymptotically flat context. An expansion around exact solutions possessing Killing vectors provides their physical meaning. In particular, we discuss a question of how to define energy and angular momenta of gravitational waves propagating on Kottler and Carter backgrounds. We show that obtained expressions have a correct limit as Λ → 0. We also comment on the relation between this approach and the one based on the canonical phase space of initial data at ℐ+.


Author(s):  
S. ALBEVERIO ◽  
G. GUATTERI ◽  
S. MAZZUCCHI

The Belavkin equation, describing the continuous measurement of the momentum of a quantum particle, is studied. The existence and uniqueness of its solution is proved via analytic tools. A stochastic characteristics method is applied. A rigorous representation of the solution by means of an infinite dimensional oscillatory integral (Feynman path integral) defined on the phase space is also given.


Author(s):  
Bahar Afsharizand ◽  
Pooya H. Chaghoei ◽  
A A. Kordbacheh ◽  
A Trufanov ◽  
G.Reza Jafari

According to its inner property, a crisis in the financial market can be considered as a collective behavior phenomenon. Through the prism of collective behavior, the crisis does not happen if the companies are independent of each other. In this work, cooperative movement processes in a stock market are investigated in a manner similar to that Vicsek first described collective behavior for self-propelled entities. To this end, a phase space is defined as the one in which the return of volume of transactions versus return of price is represented with each share in each day corresponding to a unique point in the space. The findings of the observation show that during times of crisis, the phase space is limited with the vector velocity of shares in the same direction. In contrast, on a regular day, the phase space is entirely accessible, with vector velocity aligned randomly. Moreover, in line with the Vicsek model, an order parameter is introduced, which evaluates the cooperative effects for the shares so that the higher the value of this parameter, the stronger the collective behavior of the shares.


2011 ◽  
Vol 110-116 ◽  
pp. 3750-3754
Author(s):  
Jun Lu ◽  
Xue Mei Wang ◽  
Ping Wu

Within the framework of the quantum phase space representation established by Torres-Vega and Frederick, we solve the rigorous solutions of the stationary Schrödinger equations for the one-dimensional harmonic oscillator by means of the quantum wave-mechanics method. The result shows that the wave mechanics and the matrix mechanics are equivalent in phase space, just as in position or momentum space.


2010 ◽  
Vol 25 (06) ◽  
pp. 1253-1266
Author(s):  
TAMAR FRIEDMANN

We construct a classical dynamical system whose phase space is a certain infinite-dimensional Grassmannian manifold, and propose that it is equivalent to the large N limit of two-dimensional QCD with an O (2N+1) gauge group. In this theory, we find that baryon number is a topological quantity that is conserved only modulo 2. We also relate this theory to the master field approach to matrix models.


1991 ◽  
Vol 118 (1-2) ◽  
pp. 119-131 ◽  
Author(s):  
M. A. Astaburuaga ◽  
Claudio Fernández ◽  
Víctor H. Cortés

SynopsisIn this paper we study the direct and inverse scattering problem on the phase space for a classical particle moving under the influence of a conservative force. We provide a formula for the scattering operator in the one-dimensional case and we settle the properties of the potential that can be deduced from it. We also study the question of recovering the shape of the barriers which can be seen from −∞ and ∞. An example is given showing that these barriers are not uniquely determined by the scattering operator.


1994 ◽  
Vol 03 (02) ◽  
pp. 379-392 ◽  
Author(s):  
J. FERNANDO BARBERO G.

We show in this paper that it is possible to formulate general relativity in a phase space coordinatized by two SO(3) connections. We analyze first the Husain-Kuchař model and find a two connection description for it. Introducing a suitable scalar constraint in this phase space we get a Hamiltonian formulation of gravity that is close to the one given by Ashtekar, from which it is derived, but has some interesting features of its own. Among them are a possible mechanism for dealing with the degenerate metrics and a neat way of writing the constraints of general relativity.


Sign in / Sign up

Export Citation Format

Share Document