Cancer Cell Therapy: Looking to the Future of CAR T Cell Manufacturing (Vol. 25, No. 8, Full Issue)

2021 ◽  
Vol 25 (08) ◽  

For the month of August 2021, APBN looks at some of the progress made in cancer research. In Features, we have Yie Hou Lee and Michael Birnbaum from the Singapore-MIT Alliance for Research and Technology Critical Analytics for Manufacturing Personalized-Medicine (SMART-CAMP) to share about the future of CAR T cell manufacturing. Next, a team of researchers from the National Neuroscience Institute, National University of Singapore, and the Duke-NUS Medical School enlightens us on the difficulty of treating glioblastoma brain tumours and how they plan to address its critical issues. Then we have Dr. Chi-Jui Liu and Hsiao Yun Lu to talk about hereditary cancers and how we may improve our odds in this game of roulette. In Columns, we have an analysis by Dr. Ping-Chung Leung on the integrative use of Traditional Chinese Medicine in managing treatment outcomes of COVID-19 patients and a reflection by Dr. Chris Nave on the lessons we can take away from the development of COVID-19 vaccines. Finally, in Spotlights, we share highlights from the Vaccines World Summit 2021 and an interview with Mr. Abel Ang, Group Chief Executive of Advanced MedTech on how their new venture AbAsia Biolabs can help meet Singapore’ need for increased COVID-19 test kits as we enter a new normal.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 51-51 ◽  
Author(s):  
Maria-Luisa Schubert ◽  
Anita Schmitt ◽  
Brigitte Neuber ◽  
Angela Hückelhoven-Krauss ◽  
Alexander Kunz ◽  
...  

Introduction T cells transduced with a chimeric antigen receptor (CAR) have demonstrated significant clinical efficacy in patients with lymphoid malignancies including relapsed or refractory (r/r) B-lineage acute lymphoblastic leukemia (ALL) or r/r B-cell non-Hodgkin's lymphoma (NHL). Second-generation CAR T cells comprising 4-1BB or CD28 as costimulatory domains have become commercially available for the treatment of patients with CD19+ lymphoid malignancies. However, achievement of durable clinical responses remains a challenge in CAR T cell therapy. Consequently, third-generation CARs incorporating both elements might display short-term efficacy with potent and rapid tumor elimination (CD28) as well as long-term persistence (4-1BB). So far, only two clinical trials employing third-generation CAR T cells have been reported. Both enrolled 31 patients in summary and demonstrated favorable results for third-generation CAR T cells. Here, we report on first results of our investigator-initiated trial (IIT) on third-generation CD19-directed CAR T cells: The Heidelberg CAR trial 1 (HD-CAR-1; NCT03676504; EudraCT 2016-004808-60) is a phase I/II trial initiated in September 2018 with in-house leukapheresis and CAR T cell manufacturing in full compliance with European Good Manufacturing Practice (GMP) guidelines at the University Hospital Heidelberg. Methods Adult and pediatric patients with r/r ALL and patients with r/r chronic lymphocytic leukemia (CLL) or NHL including diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL) or mantle cell lymphoma (MCL) are treated with autologous T lymphocytes transduced with a CD19 targeting third-generation CAR retroviral vector (RV-SFG.CD19.CD28.4-1BBzeta). The main purpose of HD-CAR-1 is to evaluate safety and feasibility of escalating third-generation CAR T cell doses (1-20×106 transduced cells/m2) after lymphodepletion with fludarabine (30 mg/m2/d on days -4 to -2) cyclophosphamide (500 mg/m2/d on days -4 to -2). Patients are monitored for cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS) and/or other toxicities. In vivo function, survival and anti-tumor efficacy of CAR T cells are assessed. Results To date, 10 patients (3 adult ALL, 2 CLL, 2 MCL, 2 DLBCL, 1 transformed FL) have been enrolled and subjected to leukapheresis. Transduction efficiency of T lymphocytes ranged between 33%-66% and high numbers of transduced CAR T cells were harvested (70-123x106 CAR T cells). No production failure occurred. CAR T cell products were sterile and free from mycoplasma and endotoxins. The copy number per CAR T cell did not exceed 7. Eight patients (2 adult ALL, 2 CLL, 1 MCL, 2 DLBCL, 1 transformed FL) have received the CAR T cell product (6 patients: 106 transduced cells/m2; 2 patients 5×106 transduced cells/m2). No signs of CRS or ICANS > grade 2 have been observed. Only one patient required tocilizumab. No neurological side-effects occurred, even not in patients with involvement of the central nervous system (CNS). In quantitative real-time PCR, CAR T cells were detectable in the peripheral blood (PB) in 3 of 4 analyzed patients or the cerebrospinal fluid (CSF) of an ALL patient with CNS involvement. The CAR T cell frequency reached up to 200,000 copies/µg DNA, in some patients beyond end-of-study at day 90 after CAR T cell administration. Clinical responses to treatment were observed in 6/8 (75%) treated patients so far (2/8 patients have received CAR T cells recently and are not yet evaluable for response). Conclusion Leukapheresis and CAR T cell manufacturing were effective for all patients enrolled in the HD-CAR trial to date. Patients responded clinically to treatment despite low numbers of administered CAR T cells. CAR T cells displayed an excellent safety profile and were detectable for more than 3 months following administration. Furthermore, CAR T cells migrated into different compartments including the CSF in case of CNS involvement. For HD-CAR-1 leukapheresis, CAR T cell manufacturing, CAR T cell administration, patient monitoring and follow-up are performed in-house, providing autarky from transport or production sites outside the University Hospital Heidelberg. Altogether, HD-CAR-1 accounts to clinical evaluation of third-generation CAR T cells that might contribute to long-term CAR T cell persistence, hence improving efficient and durable responses in treated patients. Disclosures Schmitt: Therakos Mallinckrodt: Other: Financial Support . Sellner:Takeda: Employment. Müller-Tidow:MSD: Membership on an entity's Board of Directors or advisory committees. Dreger:AbbVie, AstraZeneca, Gilead, Janssen, Novartis, Riemser, Roche: Consultancy; AbbVie, Gilead, Novartis, Riemser, Roche: Speakers Bureau; Neovii, Riemser: Research Funding; MSD: Membership on an entity's Board of Directors or advisory committees, Other: Sponsoring of Symposia. Schmitt:Therakos Mallinckrodt: Other: Financial Support; MSD: Membership on an entity's Board of Directors or advisory committees, Other: Sponsoring of Symposia.


Author(s):  
M Mues ◽  
M Winkels ◽  
K Lange ◽  
M Niemöller ◽  
J Milleck ◽  
...  

Cytotherapy ◽  
2017 ◽  
Vol 19 (5) ◽  
pp. S14 ◽  
Author(s):  
S.L. Highfill ◽  
J. Jin ◽  
V. Fellowes ◽  
J. Ren ◽  
S. Ramakrishna ◽  
...  

2020 ◽  
Vol 5 (4) ◽  
pp. S50
Author(s):  
Albeena Nisar ◽  
Minal Poojary ◽  
Deepali Pandit ◽  
Chetan Dhamne ◽  
Husmukh Jain ◽  
...  

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A153-A153
Author(s):  
Hannah Song ◽  
Lipei Shao ◽  
Michaela Prochazkova ◽  
Adam Cheuk ◽  
Ping Jin ◽  
...  

BackgroundWith the clinical success of chimeric antigen receptor (CAR)-T cells against hematological malignancies, investigators are looking to expand CAR-T therapies to new tumor targets and patient populations. To support translation to the clinic, a variety of cell manufacturing platforms have been developed to scale manufacturing capacity while using closed and/or automated systems. Such platforms are particularly useful for solid tumor targets, which typically require higher CAR-T cell doses that can number in the billions. Although T cell phenotype and function are key attributes that often correlate with therapeutic efficacy, it is currently unknown whether the manufacturing platform itself significantly influences the output T cell phenotype and function.MethodsStatic bag culture was compared with 3 widely-used commercial CAR-T manufacturing platforms (Miltenyi CliniMACS Prodigy, Cytiva Xuri W25 rocking platform, and Wilson-Wolf G-Rex gas-permeable bioreactor) to generate CAR-T cells against FGFR4, a promising target for pediatric sarcoma. Selected CD4+CD8+ cells were stimulated with Miltenyi TransAct, transduced with lentiviral vector, and cultured out to 14 days in TexMACS media with serum and IL2.ResultsAs expected, there were significant differences in overall expansion, with bag cultures yielding the greatest fold-expansion while the Prodigy had the lowest (481-fold vs. 84-fold, respectively; G-Rex=175-fold; Xuri=127-fold; average of N=4 donors). Interestingly, we also observed considerable differences in CAR-T phenotype. The Prodigy had the highest percentage of CD45RA+CCR7+ stem/central memory (Tscm)-like cells at 46%, while the bag and G-Rex cultures had the lowest at 16% and 13%, respectively (average N=4 donors). In contrast, the bag, G-Rex, and Xuri cultures were enriched for CD45RO+CCR7- effector memory cells and also had higher expression of exhaustion markers PD1 and LAG3. Gene clustering analysis using a CAR-T panel of 780 genes revealed clusters of genes enriched in Prodigy/de-enriched in bag, and vice versa. We are currently in the process of evaluating T cell function.ConclusionsThis is the first study to our knowledge to benchmark these widely-used bioreactor systems in terms of cellular output, demonstrating that variables inherent to each platform (such as such as nutrient availability, gas exchange, and shear force) significantly influence the final CAR-T cell product. Whether enrichment of Tscm-like cells in the final infusion product correlates with response rate, as has been demonstrated in the setting of CD19 CAR-Ts, remains to be seen and may differ for FGFR4 CAR-Ts and other solid tumors. Overall, our study outlines methods to identify the optimal manufacturing process for future CAR-T cell therapies.


2021 ◽  
Vol 32 ◽  
pp. S1393
Author(s):  
M. Wenes ◽  
A. Jaccard ◽  
T. Wyss ◽  
N. Maldonado-Pérez ◽  
S-T. Teoh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document