Global blowup controllability of heat equation with feedback control

2018 ◽  
Vol 20 (05) ◽  
pp. 1750062 ◽  
Author(s):  
Ping Lin

This paper concerns a global controllability problem for heat equations. In the absence of control, the solution to the linear heat system globally exists. While for each initial data, we can find a feedback control acting on an internal subset of the space domain such that the corresponding solution to the system blows up at given time.

2020 ◽  
Vol 34 ◽  
pp. 03011
Author(s):  
Constantin Niţă ◽  
Laurenţiu Emanuel Temereancă

In this article we prove that the heat equation with a memory term on the one-dimensional torus has a unique solution and we study the smoothness properties of this solution. These properties are related with some smoothness assumptions imposed to the initial data of the problem and to the source term.


2019 ◽  
Vol 25 ◽  
pp. 50 ◽  
Author(s):  
Pierre Lissy ◽  
Yannick Privat ◽  
Yacouba Simporé

We consider a semi-linear heat equation with Dirichlet boundary conditions and globally Lipschitz nonlinearity, posed on a bounded domain of ℝN (N ∈ ℕ*), assumed to be an unknown perturbation of a reference domain. We are interested in an insensitizing control problem, which consists in finding a distributed control such that some functional of the state is insensitive at the first order to the perturbations of the domain. Our first result consists of an approximate insensitization property on the semi-linear heat equation. It rests upon a linearization procedure together with the use of an appropriate fixed point theorem. For the linear case, an appropriate duality theory is developed, so that the problem can be seen as a consequence of well-known unique continuation theorems. Our second result is specific to the linear case. We show a property of exact insensitization for some families of deformation given by one or two parameters. Due to the nonlinearity of the intrinsic control problem, no duality theory is available, so that our proof relies on a geometrical approach and direct computations.


2015 ◽  
Vol 17 (02) ◽  
pp. 1350042 ◽  
Author(s):  
Valeria Marino ◽  
Filomena Pacella ◽  
Berardino Sciunzi

Consider the nonlinear heat equation vt - Δv = |v|p-1v in a bounded smooth domain Ω ⊂ ℝn with n > 2 and Dirichlet boundary condition. Given up a sign-changing stationary classical solution fulfilling suitable assumptions, we prove that the solution with initial value ϑup blows up in finite time if |ϑ - 1| > 0 is sufficiently small and if p is sufficiently close to the critical exponent [Formula: see text]. Since for ϑ = 1 the solution is global, this shows that, in general, the set of the initial data for which the solution is global is not star-shaped with respect to the origin. This phenomenon had been previously observed in the case when the domain is a ball and the stationary solution is radially symmetric.


2019 ◽  
Vol 2019 (756) ◽  
pp. 37-63 ◽  
Author(s):  
Jonathan Bennett ◽  
Neal Bez

AbstractThe purpose of this article is to expose and further develop a simple yet surprisingly far-reaching framework for generating monotone quantities for positive solutions to linear heat equations in euclidean space. This framework is intimately connected to the existence of a rich variety of algebraic closure properties of families of sub/super-solutions, and more generally solutions of systems of differential inequalities capturing log-convexity properties such as the Li–Yau gradient estimate. Various applications are discussed, including connections with the general Brascamp–Lieb inequality and the Ornstein–Uhlenbeck semigroup.


2016 ◽  
pp. 4437-4439
Author(s):  
Adil Jhangeer ◽  
Fahad Al-Mufadi

In this paper, conserved quantities are computed for a class of evolution equation by using the partial Noether approach [2]. The partial Lagrangian approach is applied to the considered equation, infinite many conservation laws are obtained depending on the coefficients of equation for each n. These results give potential systems for the family of considered equation, which are further helpful to compute the exact solutions.


2021 ◽  
pp. 1-10
Author(s):  
Nejmeddine Chorfi

The aim of this work is to highlight that the adaptivity of the time step when combined with the adaptivity of the spectral mesh is optimal for a semi-linear parabolic equation discretized by an implicit Euler scheme in time and spectral elements method in space. The numerical results confirm the optimality of the order of convergence. The later is similar to the order of the error indicators.


2020 ◽  
Vol 10 (1) ◽  
pp. 353-370 ◽  
Author(s):  
Hans-Christoph Grunau ◽  
Nobuhito Miyake ◽  
Shinya Okabe

Abstract This paper is concerned with the positivity of solutions to the Cauchy problem for linear and nonlinear parabolic equations with the biharmonic operator as fourth order elliptic principal part. Generally, Cauchy problems for parabolic equations of fourth order have no positivity preserving property due to the change of sign of the fundamental solution. One has eventual local positivity for positive initial data, but on short time scales, one will in general have also regions of negativity. The first goal of this paper is to find sufficient conditions on initial data which ensure the existence of solutions to the Cauchy problem for the linear biharmonic heat equation which are positive for all times and in the whole space. The second goal is to apply these results to show existence of globally positive solutions to the Cauchy problem for a semilinear biharmonic parabolic equation.


Sign in / Sign up

Export Citation Format

Share Document