EQUIVALENT MOMENT APPROACH FOR ELASTIC LATERAL-TORSIONAL BUCKLING OF TAPERED BEAMS

2010 ◽  
Vol 10 (03) ◽  
pp. 387-409 ◽  
Author(s):  
JOSÉ R. IBAÑEZ ◽  
MIGUEL A. SERNA

The assessment of the design buckling resistance of single members is usually based either directly on the elastic buckling resistance of the member or indirectly on its non-dimensional slenderness computed from the elastic buckling resistance. Specifically, Eurocode 3 buckling curves define the buckling reduction factors as a function of non-dimensional slenderness and, according to EC3 "General Method", these curves may also be used for non-uniform members. In this context, a new procedure will be presented for the computation of the elastic critical moment of tapered members. As is well known, the elastic critical moment strongly depends on both the bending moment diagram and end support restrictions. For uniform members, elastic critical moments may be computed using a relatively simple formula in which the bending moment distribution is taken into account by an equivalent uniform moment factor, and the end support restrictions are introduced through the buckling length. Unfortunately, this formula has not been extended to tapered members and, as a consequence, the elastic critical moment for tapered beams must be obtained using numerical methods such as the finite element methods. Based on a comprehensive parametric study for the elastic critical moment of tapered beams with different moment diagrams, this paper offers a new procedure, called the Equivalent Moment Approach, for the substitution of a tapered beam with any moment diagram by an equivalent uniform beam. One advantage of the present procedure is that closed form expressions valid for uniform beam can be generalized and used for tapered beams.

Author(s):  
Zhao Wang ◽  
Wei Qin ◽  
Xiaojie Zhang ◽  
Jiannan Zhao ◽  
Yong Bai

Abstract The steel lazy wave riser has been used in deep-water oil and gas field development because it has good adaption to the movement of the upper platform and economic efficiency. The typical design criterion and design flow of steel lazy wave riser are introduced in this paper. The design method and the equivalence principle of distributed buoyancy modules are given. The formulas of equivalent hydrodynamic parameters are derived in this paper. The influences of distributed buoyancy modules (DBM) and the buoyancy factor on the configuration of the riser, the top tension, and the bending moment distribution are discussed and summarized. The distribution law of effective stress response along the pipe can be analyzed by dynamic analysis, and it provides reference for the global design of steel lazy wave riser.


Author(s):  
Peter R Greaves ◽  
Robert G Dominy ◽  
Grant L Ingram ◽  
Hui Long ◽  
Richard Court

Full-scale fatigue testing is part of the certification process for large wind turbine blades. That testing is usually performed about the flapwise and edgewise axes independently but a new method for resonant fatigue testing has been developed in which the flapwise and edgewise directions are tested simultaneously, thus also allowing the interactions between the two mutually perpendicular loads to be investigated. The method has been evaluated by comparing the Palmgren–Miner damage sum around the cross-section at selected points along the blade length that results from a simulated service life, as specified in the design standards, and testing. Bending moments at each point were generated using wind turbine simulation software and the test loads were designed to cause the same amount of damage as the true service life. The mode shape of the blade was tuned by optimising the position of the excitation equipment, so that the bending moment distribution was as close as possible to the target loads. The loads were converted to strain–time histories using strength of materials approach, and fatigue analysis was performed. The results show that if the bending moment distribution is correct along the length of the blade, then dual-axis resonant testing tests the blade much more thoroughly than sequential tests in the flapwise and edgewise directions. This approach is shown to be more representative of the loading seen in service and can thus contribute to a potential reduction in the weight of wind turbine blades and the duration of fatigue tests leading to reduced cost.


2015 ◽  
Vol 744-746 ◽  
pp. 1033-1036
Author(s):  
Zi Chang Shangguan ◽  
Shou Ju Li ◽  
Li Juan Cao ◽  
Hao Li

In order to simulate moment distribution on linings of tunnel excavated by shield, FEM-based procedure is proposed. According to geological data of tunnel excavated by shield, FEM model is performed, and the moment, axial force and shear force distributions on linings are computed. The maximum moment on segments decreases while Poisson’s ratio of soil materials touching to segments increases. The moment value and distribution vary with Young’s modulus of soil materials. The maximum positive moment on linings is approximately equal to the maximum negative moment.


Author(s):  
W. Feng ◽  
Z. M. Shi ◽  
L. M. Liu ◽  
F. Li

The interaction between sheet ice and sloping structure was studied. Models were built up according to the emersed part and floating part of the ice sheet respectively. Bending moment distribution in ice sheet was analyzed to determine where bending failure would occur. The analytic solution of breaking length for sheet ice was got. And some new conclusions were also deduced, which could provide reference for design and field experiment of offshore ice-resistant structure. The results in this paper are consistent with the experimental data from previous researchers. The theoretical results of this paper can directly be used in the analysis of wide inclined structures.


2012 ◽  
Vol 50 (1) ◽  
pp. 24-36 ◽  
Author(s):  
Y.Q. Wang ◽  
H.X. Yuan ◽  
Y.J. Shi ◽  
M. Cheng

Sign in / Sign up

Export Citation Format

Share Document