Feasibility of Using a Negative Stiffness Damper to Two Interconnected Stay Cables for Damping Enhancement

2019 ◽  
Vol 19 (06) ◽  
pp. 1950058 ◽  
Author(s):  
Peng Zhou ◽  
Min Liu ◽  
Huigang Xiao ◽  
Hui Li

The dynamic behavior of stay cables has a significant impact on the safety and serviceability of cable-stayed bridges. As tuning such dynamic behavior could be effectively achieved by a damping increase on stay cables, this paper investigates on the feasibility of increasing damping on two stay cables simultaneously through interconnecting them with a negative stiffness damper (NSD). It presents the passive realization of the NSD through the following process. First, under harmonic excitations, the steady-state dynamic responses of the two cables in the network are derived. Then, the asymptotic solutions for the additional modal damping ratios are formulated with the critical viscous damping and negative stiffness determined approximately. Subsequently, a parametric analysis is performed to verify the theoretical derivations using two stay cables of a real long-span cable-stayed bridge, under a series of numerical evaluations consisting of sinusoidal excitations and white noises vibrational responses for both cables. Both the theoretical and numerical results show superior damping enhancement by the NSD, in that the vibration responses of the two cables are reduced remarkably.

2014 ◽  
Vol 1065-1069 ◽  
pp. 870-874
Author(s):  
Yong Myung Park ◽  
Ji Hoon Kang ◽  
Sung Hun Cho ◽  
Hee Soon Kim

In this study, dynamic behavior of cable-stayed bridge under moving vehicle and train was analyzed. The parameters considered are the main span length of bridge and the existence of intermediate pier at side span. For the parametric analysis, cable-stayed bridges with 400m and 700m main span (with and without the intermediate pier at side span) were selected. From the vehicle/train-bridge interaction analysis, the intermediate pier was found very effective to reduce the dynamic amplification of girder and stay-cables.


2012 ◽  
Vol 568 ◽  
pp. 200-203
Author(s):  
Xiang Nan Wu ◽  
Xiao Liang Zhai ◽  
Ming Min Zhou

There exist evident shear-lag phenomena in large-span composite cable-stayed bridges under the action of axial force, especially in the deck with double main girders. In order to discuss the distribution law of the effective flange width coefficient along the span, caused by axial force, finite element computations of five composite cable-stayed bridges and theoretical analysis have been performed. The transmission angle of axial force caused by the axial compression of stay cables was given, meanwhile the formulas for computation effective slab width coefficient under axial force were suggested.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Seunghoo Jeong ◽  
Young-Joo Lee ◽  
Sung-Han Sim

As the construction of long-span bridges such as cable-stayed bridges increases worldwide, maintaining bridge serviceability and operability has become an important issue in civil engineering. The stay cable is a principal component of cable-stayed bridges and is generally lightly damped and intrinsically vulnerable to vibration. Excessive vibrations in stay cables can potentially cause long-term fatigue accumulation and serviceability issues. Previous studies have mainly focused on the mitigation of cable vibration within an acceptable operational level, while little attention has been paid to the quantitative assessment of serviceability enhancement provided by vibration control. This study accordingly proposed and evaluated a serviceability assessment method for stay cables equipped with vibration control. Cable serviceability failure was defined according to the range of acceptable cable responses provided in most bridge design codes. The cable serviceability failure probability was then determined by means of the first-passage problem using VanMarcke’s approximation. The proposed approach effectively allows the probability of serviceability failure to be calculated depending on the properties of any installed vibration control method. To demonstrate the proposed method, the stay cables of the Second Jindo Bridge in South Korea were evaluated and the analysis results accurately reflected cable behavior during a known wind event and show that the appropriate selection of vibration control method and properties can effectively reduce the probability of serviceability failure.


2014 ◽  
Vol 587-589 ◽  
pp. 1391-1394 ◽  
Author(s):  
Chao Yi Yao ◽  
Qian Hui Pu ◽  
Ya Dong Yao

The cable-stayed bridge got rapid development in recent years. And for long-span cable-stayed bridges, the cable-girder anchorage structure is a key component in designing. The function of the cable-girder anchorage structure is to transfer the load between cables and the main girder. With the complex load transfer mechanism and stress concentration induced by large cable force, rational design of cable-girder anchorage structure is critical to long-span cable-stayed bridges. Take a certain long-span railway cable-stayed bridge in Zhejiang Province as the investigation, the load transfer mechanism and the stress distribution state was studied by finite element model. The research indicated that the design of this anchor box was rational. The stress distribution on each plate of the anchor box was relatively uniform. And the load transfer path and mechanisms of the main components of this anchor box were clear.


2018 ◽  
Vol 4 (4) ◽  
pp. 137 ◽  
Author(s):  
Alemdar Bayraktar ◽  
Ashraf Ashour ◽  
Halil Karadeniz ◽  
Altok Kurşun ◽  
Arif Erdiş

An accurate numerical analysis of the behavior of long-span cable-stayed bridges under environmental effects is a challenge because of complex, uncertain and varying environmental meteorology. This study aims to investigate in-situ experimental structural behavior of long-span steel cable-stayed bridges under environmental effects such as air temperature and wind using the monitoring data. Nissibi cable-stayed bridge with total length of 610m constructed in the city of Adıyaman, Turkey, in 2015 is chosen for this purpose. Structural behaviors of the main structural elements including deck, towers (pylons) and cables of the selected long span cable-stayed bridge under environmental effects such as air temperature and wind are investigated by using daily monitoring data. The daily variations of cable forces, cable accelerations, pylon accelerations and deck accelerations with air temperature and wind speed are compared using the hottest summer (July 31, 2015) and the coldest winter (January 1, 2016) days data.


2014 ◽  
Vol 501-504 ◽  
pp. 1174-1177
Author(s):  
Xiao Ming Du ◽  
Nan Li

The stayed cable is the key part of the cable-stayed bridge and the main bearing section. Stay cables are prone to vibration under the loads of the rains winds, earthquakes and transportation for the long-span bridge is very flexible and the damping is small. A long time effect of cable vibration on the structure durability has become a serious problem of cable-stayed bridge in the development and operation. Wind induced vibration of stay cable shape is analyzed, and some common damping measures are expounded in the article and it provides the basis for further study in the future.


2012 ◽  
Vol 256-259 ◽  
pp. 1474-1479
Author(s):  
Dong Liang ◽  
Hui Cai Shen ◽  
Yan Feng Li

Cable-stayed bridges have seen a wider application in recent years, with many having longer and longer spans. Modern cable-stayed bridges are using numerous cables to support the stiffing girders. Many cable dampers are installed to mitigate cable vibration. This paper focuses the attention on the effect of cable damper on the dynamic characteristics of the whole cable-stayed bridge, especially the modal damping. A practical model comprised of the cable, girder, and damper is developed to analyze the relationship between system modal damping and the performance of cable damper with complex mode method. A test model with cable, girder and damper was made to verify the theoretical results. A finite element model of a simplified cable-stayed bridge based on test model is adopted to assess the effects of cable dampers on the anti-seismic performance and wind-resistant behavior of the cable-stayed bridge. The results show that the cable dampers of cable-stayed bridge can increase the modal damping of the whole bridge.


2014 ◽  
Vol 501-504 ◽  
pp. 1125-1128
Author(s):  
Liang Liang Zhai

For long-span cable-stayed bridge, the stress of pylon anchorage zone is complex. For the construction technology personnel, the research on the force characteristics of anchorage zone can offer a theoretical base to organize construction better. This paper makes a further study for the stress of tower anchorage zone of two cable-stayed bridges with different anchor forms by using major general finite element program ANSYS to analysis the force characteristics of anchorage zone in detail. The results provide a reference for construct and design the same type structure. The analysis method for same type structure is also worth learning.


2018 ◽  
Vol 149 ◽  
pp. 02044
Author(s):  
Mouloud Ouanani ◽  
Boualem Tiliouine ◽  
Malek Hammoutene

This present paper summarizes the main results of incoherence of Spatial Variability of Ground Motion (SVGM) component on the non-linear dynamic behavior of a Mila cable stayed bridge. The Hindy and Novack coherence model is developed for the present study in order to examine the SVGM on bridge responses, Nonlinear bridge responses are investigated in terms of transverse displacements and bending moments along the superstructure and substructure of the study bridge, as well as temporal variations of rotational ductility demands at the bridge piers ends under the incoherence SVGM component. The results are systematically compared with those obtained assuming uniform ground motion. As a general trend, it may be concluded that incoherence component of SVGM should be considered for the earthquake response assessments of cable-stayed bridges.


2011 ◽  
Vol 63-64 ◽  
pp. 474-477
Author(s):  
Peng Liang ◽  
Zhong Ping Qin ◽  
Guo Xing Wang

In order to accurately reflect the effects and the spatial and temporal variation of long span cable-stayed bridge during the construction process, this paper, based on total CR formulation and the catenary cable element, improves the existing methods of geometrically nonlinear analysis and then develops a new software for nonlinear analysis of bridge through the entire construction.


Sign in / Sign up

Export Citation Format

Share Document