Hydrodynamic Response Analysis of Combined Spar Wind Turbine and Fish Cage for Offshore Fish Farms

2020 ◽  
Vol 20 (09) ◽  
pp. 2050104
Author(s):  
Y. I. Chu ◽  
C. M. Wang

This paper is concerned with the hydrodynamic response of a novel offshore fish farm that combines a floating spar wind turbine and a fish cage (named as COSPAR for brevity). The open net steel cage is octagonal in shape with a partially porous wave fence at its top end to attenuate wave energy for a calm fish farming environment as well as to keep predators out. The deep draught spar is made from concrete for its bottom half and from steel for its top half. The spar carries a control unit and a 1[Formula: see text]MW wind turbine that provides the required power to operate the offshore salmon fish farm. The COSPAR fish cage has four catenary chains as mooring lines attached to mid length of the spar (outside the fish cage) so as to mitigate tension force in the mooring lines and to reduce the benthic footprint. ANSYS Design Modeler and Aqwa are used to perform the hydrodynamic response analysis of free-floating condition of COSPAR in the frequency domain and coupled analysis involving COSPAR and the mooring lines in the frequency domain and time domain. Environmental conditions, representing 5-year, 20-year and 50-year wave return periods with a constant current flow at an exposed fish farming site in Storm Bay of Tasmania, Australia, are adopted for the analyses. A comparison study is made against having a floating fish cage only (i.e. without the bottom half concrete of the spar) with four catenary chains attached to side vertical columns of the cage so that the fish cage behaves like a semi-submersible cage. Based on the comparison study, the COSPAR fish cage shows enhanced hydrodynamic responses in the following respects: (1) more stable motion responses in heave and pitch against wave and current forces, (2) less susceptible to the viscous damping when it is assumed by a linearized drag force of Morison elements in the frequency domain and (3) reduction of tension forces in the mooring lines. Interestingly, the pitch motion response of COSPAR fish cage in the frequency domain is in close agreement with the time domain result due to its greater pitching stiffness that reduces nonlinear effects from viscous drag and mooring interaction.

Author(s):  
Lin Li ◽  
Muk Chen Ong

The development of reliable fish farm structures for open seas becomes more and more important. One of the challenges is to design a robust structure to withstand the harsh offshore environmental loads. This paper investigates a semi-submersible type offshore fish farm system for open seas. This system consists of a semi-submersible support structure with pontoons and braces, a catenary mooring system and net cages. The support structure is designed to be rigid to resist severe offshore conditions. A preliminary hydrodynamic and response analysis is carried out for this concept. The linear hydrodynamic properties using different composite models with panel and Morison elements are computed. Based on the hydrodynamic analysis, linearised frequency-domain and coupled time-domain analysis are performed to predict the extreme motions of the support structure and the extreme tensions in the mooring lines. The results indicate that the frequency-domain method underestimates the extreme responses, and the couplings between the structure and the mooring system need to be considered in the time-domain. Responses using various hydrodynamic models are also compared to evaluate the influences of the viscous effects from the pontoons and the nets of this fish farm concept.


2021 ◽  
Vol 9 (7) ◽  
pp. 781
Author(s):  
Shi He ◽  
Aijun Wang

The numerical procedures for dynamic analysis of mooring lines in the time domain and frequency domain were developed in this work. The lumped mass method was used to model the mooring lines. In the time domain dynamic analysis, the modified Euler method was used to solve the motion equation of mooring lines. The dynamic analyses of mooring lines under horizontal, vertical, and combined harmonic excitations were carried out. The cases of single-component and multicomponent mooring lines under these excitations were studied, respectively. The case considering the seabed contact was also included. The program was validated by comparing with the results from commercial software, Orcaflex. For the frequency domain dynamic analysis, an improved frame invariant stochastic linearization method was applied to the nonlinear hydrodynamic drag term. The cases of single-component and multicomponent mooring lines were studied. The comparison of results shows that frequency domain results agree well with nonlinear time domain results.


Author(s):  
H. K. Jang ◽  
H. C. Kim ◽  
M. H. Kim ◽  
K. H. Kim

Numerical tools for a single floating offshore wind turbine (FOWT) have been developed by a number of researchers, while the investigation of multi-unit floating offshore wind turbines (MUFOWT) has rarely been performed. Recently, a numerical simulator was developed by TAMU to analyze the coupled dynamics of MUFOWT including multi-rotor-floater-mooring coupled effects. In the present study, the behavior of MUFOWT in time domain is described through the comparison of two load cases in maximum operational and survival conditions. A semi-submersible floater with four 2MW wind turbines, moored by eight mooring lines is selected as an example. The combination of irregular random waves, steady currents and dynamic turbulent winds are applied as environmental loads. As a result, the global motion and kinetic responses of the system are assessed in time domain. Kane’s dynamic theory is employed to formulate the global coupled dynamic equation of the whole system. The coupling terms are carefully considered to address the interactions among multiple turbines. This newly developed tool will be helpful in the future to evaluate the performance of MUFOWT under diverse environmental scenarios. In the present study, the aerodynamic interactions among multiple turbines including wake/array effect are not considered due to the complexity and uncertainty.


2018 ◽  
Vol 18 (03) ◽  
pp. 1850037 ◽  
Author(s):  
Ning Su ◽  
Zhenggang Cao ◽  
Yue Wu

Wind-induced response analysis is an important process in the design of large-span roofs. Conventional time-domain methods are computationally more expensive than frequency-domain algorithms; however, the latter are not as accurate because of the ill-treatment of the modal coupling effects. This paper revisited the derivations of the frequency-domain algorithm and proposed a fast algorithm for estimating the dynamic wind-induced response considering duly the modal coupling effects. With the wind load cross-spectra modeled by rational functions, closed-form solutions to the frequency-domain integrals can be calculated by Cauchy’s residue theorem, rather than by numerical integration, thereby reducing the truncation errors and enhancing the efficiency of computation. The algorithm is applied to the analysis of a grandstand roof and a spherical dome. Through comparison with time domain analyses results, the algorithm is proved to be reliable. A criterion of the coupling modal combination was suggested based on the cumulative modal contribution rate of over 70%.


Author(s):  
Ying Min Low ◽  
Robin S. Langley

The global dynamic response of a deep water floating production system needs to be predicted with coupled analysis methods to ensure accuracy and reliability. Two types of coupling can be identified: one is between the floating platform and the mooring lines/risers, while the other is between the mean offset, the wave frequency, and the low frequency motions of the system. At present, it is unfeasible to employ fully coupled time domain analysis on a routine basis due to the prohibitive computational time. This has spurred the development of more efficient methods, including frequency domain approaches. A good understanding of the intricate coupling mechanisms is paramount for making appropriate approximations in an efficient method. To this end, a simplified two degree-of-freedom system representing the surge motion of a vessel and the fundamental vibration mode of the lines is studied for physical insight. Within this framework, the frequency domain equations are rigorously formulated, and the nonlinearities in the restoring forces and drag are statistically linearized. The model allows key coupling effects to be understood; among other things, the equations demonstrate how the wave frequency dynamics of the mooring lines are coupled to the low frequency motions of the vessel. Subsequently, the effects of making certain simplifications are investigated through a series of frequency domain analyses, and comparisons are made to simulations in the time domain. The work highlights the effect of some common approximations, and recommendations are made regarding the development of efficient modeling techniques.


Author(s):  
A. Ghasemi ◽  
Y. Drobyshevski ◽  
M. Kimiaei ◽  
M. Efthymiou

Abstract Response based analysis (RBA) is a comprehensive approach for the prediction of extreme responses and design metocean conditions of offshore facilities. For RBA, the structural system needs to be modelled, and its behavior analyzed when subjected to large metocean datasets, usually comprising thousands of different sea states. Due to the dynamic and nonlinear behavior of mooring systems in floating structures, application of conventional time domain analysis for RBA of these systems is a computationally demanding process. Hence, investigation of faster solvers and more efficient methods for the RBA is inevitable. Peak distribution method (PDM), which has recently been introduced and used for response analysis of mooring systems under extreme design conditions, is a possible solution to reduce the computational efforts in RBA by reducing the number of simulations. This study explores the utilization of the PDM for RBA of the mooring system of a turret-moored large FPSO subjected to tropical storms. Large variability of metocean parameters within such storms limits the applicability of intuitive judgement for the selection of governing sea states. The results are compared through both time-domain and frequency-domain simulations and a computationally efficient methodology is proposed. It provides a general robust framework of computing the extreme value distribution of the system response. The proposed methodology can be used for RBA of mooring lines tension under storm conditions comprising large number of sea states.


Author(s):  
Kazuhiro Iijima ◽  
Junghyun Kim ◽  
Masahiko Fujikubo

A numerical procedure for the fully coupled aerodynamic and hydroelastic time-domain analysis of an offshore floating wind turbine system including rotor blade dynamics, dynamic motions and flexible deflections of the structural system is illustrated. For the aerodynamic analysis of wind turbine system, a design code FAST developed by National Renewable Energy Laboratory (NREL) is employed. It is combined with a time-domain hydroelasticity response analysis code ‘Shell-Stress Oriented Dynamic Analysis Code (SSODAC)’ which has been developed by one of the authors. Then, the dynamic coupling between the rotating blades and the structural system under wind and wave loads is taken into account. By using this method, a series of analysis for the hydroelastic response of an offshore large floating structure with two rotors under combined wave and wind loads is performed. The results are compared with those under the waves and those under the winds, respectively, to investigate the coupled effects in terms of stress as well as motions. The coupling effects between the rotor-blades and the motions are observed in some cases. The impact on the structural design of the floating structure, tower and blade is addressed.


2012 ◽  
Vol 170-173 ◽  
pp. 2316-2321
Author(s):  
Ruo Yu Zhang ◽  
Chao He Chen ◽  
You Gang Tang

In this paper, the dynamic behaviors are studied for Spar type floating foundation of a 3kW in the 10m deep water considering the coupled wind turbine-tower-floating foundation and mooring lines and ocean environment load effects. The paper focus on the key issues of design of floating foundation, such as coupling dynamic analysis model and calculating method. The finite element models are established and dynamic responses of floating wind turbine system under different combinations of turbulent wind, constant current and irregular wave are calculated in frequency and time domain with SESAM software. The motion performance and lines’ tension are investigated, and some valuable conclusions are drawn. The results show that the Spar type floating foundation and mooring system can work in the ocean environment which significant wave height less than 2m, the designed large water-entrapment plate can minimized the motion of floating foundation obviously.


1995 ◽  
Vol 117 (4) ◽  
pp. 311-317 ◽  
Author(s):  
P. So̸rensen ◽  
G. C. Larsen ◽  
C. J. Christensen

The present paper describes a frequency domain model of the structure of an operating horizontal axis wind turbine with three or more blades. The frequency domain model is implemented along with an analogous time domain model in a PC code. This PC code is used to verify the frequency domain model comparing loads on the structure calculated with the frequency domain model both to loads calculated with the time domain model and to measured loads.


Author(s):  
Lin Li ◽  
Zhen Gao ◽  
Torgeir Moan

This study addresses numerical modeling and time-domain simulations of the lowering operation for installation of an offshore wind turbine monopile (MP) with a diameter of 5.7 m and examines the nonstationary dynamic responses of the lifting system in irregular waves. Due to the time-varying properties of the system and the resulting nonstationary dynamic responses, numerical simulation of the entire lowering process is challenging to model. For slender structures, strip theory is usually applied to calculate the excitation forces based on Morison's formula with changing draft. However, this method neglects the potential damping of the structure and may overestimate the responses even in relatively long waves. Correct damping is particularly important for the resonance motions of the lifting system. On the other hand, although the traditional panel method takes care of the diffraction and radiation, it is based on steady-state condition and is not valid in the nonstationary situation, as in this case in which the monopile is lowered continuously. Therefore, this paper has two objectives. The first objective is to examine the importance of the diffraction and radiation of the monopile in the current lifting model. The second objective is to develop a new approach to address this behavior more accurately. Based on the strip theory and Morison's formula, the proposed method accounts for the radiation damping of the structure during the lowering process in the time-domain. Comparative studies between different methods are presented, and the differences in response using two types of installation vessel in the numerical model are also investigated.


Sign in / Sign up

Export Citation Format

Share Document