On the Theory of a Nonlinear Dynamic Circuit Filtering

2020 ◽  
Vol 19 (03) ◽  
pp. 2050022
Author(s):  
Dhruvi S. Bhatt ◽  
Shaival H. Nagarsheth ◽  
Shambhu N. Sharma

Stochastic Differential Equations (SDEs) describe physical systems to account for random forcing terms in the evolution of the state trajectory. The noisy sampling mixer, a component of digital wireless communications, can be regarded as a potential case from the dynamical systems’ viewpoint. The universality of the noisy sampling mixer is attributed to the fact that it adopts the structure of a nonlinear SDE and its linearized version becomes a time-varying bilinear SDE. This paper develops a mathematical theory for the nonlinear noisy sampling mixer from the filtering viewpoint. Since the filtering of stochastic systems hinges on the structure of dynamical systems and observation equation set up, we consider three ‘filtering models’. The first model, accounts for a nonlinear SDE coupled with a nonlinear observation equation. In the second model, we consider a bilinear SDE with a linear observation equation to achieve the nonlinear sampling filtering. Note that the bilinear SDE coupled with the linear observation is a consequence of the Carleman linearization to the nonlinear SDE and the nonlinear observation equation. In the third model, we consider a Stratonovich SDE coupled with a nonlinear observation equation. The filtering equation of this paper can be further utilized to guide the design process of the noisy sampling mixer.

Author(s):  
Venkatesh Deshmukh

A constructive optimization algorithm using Chebyshev spectral collocation and quadratic programming is proposed for unknown parameter estimation in nonlinear time-varying dynamic system models to be constructed from available data. The parameters to be estimated are assumed to be identifiable from the data which also implies that the assumed system models with known parameter values have a unique solution corresponding to every initial condition and parameter set. The nonlinear terms in the dynamic system models are assumed to have a known form, and the models are assumed to be parameter affine. Using an equivalent algebraic description of dynamical systems by Chebyshev spectral collocation and data, a residual quadratic cost is set up which is a function of unknown parameters only. The minimization of this cost yields the unique solution for the unknown parameters since the models are assumed to have a unique solution for a particular parameter set. An efficient algorithm is presented step-wise and is illustrated using suitable examples.


Author(s):  
Cécile Penland ◽  
Brian D Ewald

Stochastic descriptions of multiscale interactions are more and more frequently found in numerical models of weather and climate. These descriptions are often made in terms of differential equations with random forcing components. In this article, we review the basic properties of stochastic differential equations driven by classical Gaussian white noise and compare with systems described by stable Lévy processes. We also discuss aspects of numerically generating these processes.


2016 ◽  
Vol 23 (4) ◽  
pp. 319-330
Author(s):  
Jean-Louis Le Mouël ◽  
Vladimir G. Kossobokov ◽  
Frederic Perrier ◽  
Pierre Morat

Abstract. We report the results of heating experiments carried out in an abandoned limestone quarry close to Paris, in an isolated room of a volume of about 400 m3. A heat source made of a metallic resistor of power 100 W was installed on the floor of the room, at distance from the walls. High-quality temperature sensors, with a response time of 20 s, were fixed on a 2 m long bar. In a series of 24 h heating experiments the bar had been set up horizontally at different heights or vertically along the axis of the plume to record changes in temperature distribution with a sampling time varying from 20 to 120 s. When taken in averages over 24 h, the temperatures present the classical shape of steady-state plumes, as described by classical models. On the contrary, the temperature time series show a rich dynamic plume flow with intermittent trains of oscillations, spatially coherent, of large amplitude and a period around 400 s, separated by intervals of relative quiescence whose duration can reach several hours. To our knowledge, no specific theory is available to explain this behavior, which appears to be a chaotic interaction between a turbulent plume and a stratified environment. The observed behavior, with first-order factorization of a smooth spatial function with a global temporal intermittent function, could be a universal feature of some turbulent plumes in geophysical environments.


2009 ◽  
Vol 09 (02) ◽  
pp. 205-215 ◽  
Author(s):  
XIANFENG MA ◽  
ERCAI CHEN

The topological pressure is defined for subadditive sequence of potentials in bundle random dynamical systems. A variational principle for the topological pressure is set up in a very weak condition. The result may have some applications in the study of multifractal analysis for random version of nonconformal dynamical systems.


2011 ◽  
Vol 268-270 ◽  
pp. 557-560
Author(s):  
Shi Ruo Yang

The train and the continuous truss girder bridge are coupled together as one composite system. Truss girder bridge is idealized as an assemblage of finite truss element. The equations of the train and truss girder bridges time varying system are set up by using the principle of total potential energy with stationary value in elastic system dynamics and the“set-in-right-position”rule for forming structural matrices. This method is more convenient than the finite elements. The vibration responses of the train and bridge are calculated when the the passenger trains pass through a continuous truss girder bridge at speeds of 90km/h and 120km/h The results show that the passenger train can pass it safely and comfortably


Sign in / Sign up

Export Citation Format

Share Document