STOCHASTIC AVERAGING NEAR LONG HETEROCLINIC ORBITS

2007 ◽  
Vol 07 (02) ◽  
pp. 187-228 ◽  
Author(s):  
RICHARD B. SOWERS

We refine some of the bounds of [10]. There, we considered the effect of diffusive perturbations on a two-dimensional ODE with a heteroclinic cycle. We constructed corrector functions for asymptotically "glueing" together behavior of periodic orbits in the boundary layer near the heteroclinic cycle. Here, we adapt the analysis of [10] to allow for "long" heteroclinic cycles.

2021 ◽  
Vol 31 (14) ◽  
Author(s):  
Haijun Wang ◽  
Hongdan Fan ◽  
Jun Pan

Combining qualitative analysis and numerical technique, the present work revisits a four-dimensional circuit system in [Ma et al., 2016] and mainly reveals some of its rich dynamics not yet investigated: pitchfork bifurcation, Hopf bifurcation, singularly degenerate heteroclinic cycle, globally exponentially attractive set, invariant algebraic surface and heteroclinic orbit. The main contributions of the work are summarized as follows: Firstly, it is proved that there exists a globally exponentially attractive set with three different exponential rates by constructing a suitable Lyapunov function. Secondly, the existence of a pair of heteroclinic orbits is also proved by utilizing two different Lyapunov functions. Finally, numerical simulations not only are consistent with theoretical results, but also illustrate potential existence of hidden attractors in its Lorenz-type subsystem, singularly degenerate heteroclinic cycles with distinct geometrical structures and nearby hyperchaotic attractors in the case of small [Formula: see text], i.e. hyperchaotic attractors and nearby pseudo singularly degenerate heteroclinic cycles, i.e. a short-duration transient of singularly degenerate heteroclinic cycles approaching infinity, or the true ones consisting of normally hyperbolic saddle-foci (or saddle-nodes) and stable node-foci, giving some kind of forming mechanism of hyperchaos.


1968 ◽  
Vol 19 (1) ◽  
pp. 1-19 ◽  
Author(s):  
H. McDonald

SummaryRecently two authors, Nash and Goldberg, have suggested, intuitively, that the rate at which the shear stress distribution in an incompressible, two-dimensional, turbulent boundary layer would return to its equilibrium value is directly proportional to the extent of the departure from the equilibrium state. Examination of the behaviour of the integral properties of the boundary layer supports this hypothesis. In the present paper a relationship similar to the suggestion of Nash and Goldberg is derived from the local balance of the kinetic energy of the turbulence. Coupling this simple derived relationship to the boundary layer momentum and moment-of-momentum integral equations results in quite accurate predictions of the behaviour of non-equilibrium turbulent boundary layers in arbitrary adverse (given) pressure distributions.


2001 ◽  
Vol 432 ◽  
pp. 69-90 ◽  
Author(s):  
RUDOLPH A. KING ◽  
KENNETH S. BREUER

An experimental investigation was conducted to examine acoustic receptivity and subsequent boundary-layer instability evolution for a Blasius boundary layer formed on a flat plate in the presence of two-dimensional and oblique (three-dimensional) surface waviness. The effect of the non-localized surface roughness geometry and acoustic wave amplitude on the receptivity process was explored. The surface roughness had a well-defined wavenumber spectrum with fundamental wavenumber kw. A planar downstream-travelling acoustic wave was created to temporally excite the flow near the resonance frequency of an unstable eigenmode corresponding to kts = kw. The range of acoustic forcing levels, ε, and roughness heights, Δh, examined resulted in a linear dependence of receptivity coefficients; however, the larger values of the forcing combination εΔh resulted in subsequent nonlinear development of the Tollmien–Schlichting (T–S) wave. This study provides the first experimental evidence of a marked increase in the receptivity coefficient with increasing obliqueness of the surface waviness in excellent agreement with theory. Detuning of the two-dimensional and oblique disturbances was investigated by varying the streamwise wall-roughness wavenumber αw and measuring the T–S response. For the configuration where laminar-to-turbulent breakdown occurred, the breakdown process was found to be dominated by energy at the fundamental and harmonic frequencies, indicative of K-type breakdown.


1998 ◽  
Vol 371 ◽  
pp. 207-232 ◽  
Author(s):  
G. VITTORI ◽  
R. VERZICCO

Numerical simulations of Navier–Stokes equations are performed to study the flow originated by an oscillating pressure gradient close to a wall characterized by small imperfections. The scenario of transition from the laminar to the turbulent regime is investigated and the results are interpreted in the light of existing analytical theories. The ‘disturbed-laminar’ and the ‘intermittently turbulent’ regimes detected experimentally are reproduced by the present simulations. Moreover it is found that imperfections of the wall are of fundamental importance in causing the growth of two-dimensional disturbances which in turn trigger turbulence in the Stokes boundary layer. Finally, in the intermittently turbulent regime, a description is given of the temporal development of turbulence characteristics.


1972 ◽  
Vol 94 (1) ◽  
pp. 23-28 ◽  
Author(s):  
E. Brundrett ◽  
W. B. Nicoll ◽  
A. B. Strong

The van Driest damped mixing length has been extended to account for the effects of mass transfer through a porous plate into a turbulent, two-dimensional incompressible boundary layer. The present mixing length is continuous from the wall through to the inner-law region of the flow, and although empirical, has been shown to predict wall shear stress and heat transfer data for a wide range of blowing rates.


2011 ◽  
Vol 46 (6) ◽  
pp. 917-934 ◽  
Author(s):  
V. Ya. Borovoi ◽  
I. V. Egorov ◽  
A. Yu. Noev ◽  
A. S. Skuratov ◽  
I. V. Struminskaya

Sign in / Sign up

Export Citation Format

Share Document